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I. Introduction 
 Public and private organizations worldwide are experimenting with innovative water 
transfers to help match water supply and demand.  Voluntary water transfers—water banking, 
short-term transfers, and permanent sales—can help communities balance competing needs 
like environmental use, food and fiber production, and energy generation.   
 
Voluntary programs that pay farmers to reduce or cease irrigation are the focus of this report.  
In the western U.S., the most reliable or senior water rights2 are largely held in agriculture.  In 
dry periods junior water rights, often environmental, may face cutbacks leading to degraded 
habitat and newly threatened or endangered species.  When governments or non-profits are 
willing and able to buy or lease water, there is potential for all water users to benefit—for 
example, when a city offers to pay more for water than what farmers could earn irrigating some 
of their least profitable fields.   
 
Water transfers from agriculture have been controversial.  Impacts to local businesses, 
microenvironments, and the character and culture of rural areas must be considered.  Although 
water transfer agreements have had problems, they rival other supply options in terms of 
environmental impacts, energy efficiency, and financial cost.  In many regions, infrastructure to 
convey water from sellers to buyers is already in place.  An adequate legal framework for 
transferring the use of water also exists in many jurisdictions, though this framework can be 
improved.  Grafton et al. (2010) compared water markets in Australia, Chile, China, South 
Africa, and the United States and found, “In all cases … further development of robust water 
rights and governance are possible, should policy makers wish to undertake the necessary 
reforms.” 
 
In this report we provide information to help development of temporary water transfer 
agreements by examining three topics that need to be addressed by such agreements: 
measuring transferred water, monitoring water sellers  transfer compliance, and enforcing 
transfer contracts. 
 
The next section of this report describes measurement, monitoring, and enforcement (MME) 
methodologies and practices that can be used to (1) estimate or quantify the amount of water 
conserved through fallowing programs; (2) verify that specific crop fields and pastures enrolled 
in fallowing programs actually remain un-irrigated for the time periods specified; and (3) 
provide a clear structure of incentives for compliance in the form of penalties and other 
methods. This is based on a review of programs that seek to reduce consumptive use in crop 
production throughout arid regions of the world and other innovative water saving programs. 
The subsequent sections summarize ideas and innovations for improving MME, discuss the 
costs of MME strategies, and provide recommendations on improving MME. 

 
Water conservation and transfer programs from California, Texas, Idaho, Oregon, the U.S. 
Department of Agriculture (USDA) and Australia are considered here.  Fallowing programs in 
California, Oregon, and Idaho conserve water historically used to irrigate crops for transfer to 
other purposes. Recent iterations of these programs are examined.  The Australian program 
                                            
2 First instances of terms defined in the Glossary (page 59) are highlighted. 
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discussed here is not a fallowing program but an attempt to cap diversions in the Murray-
Darling Basin, which crosses several states.  All the programs described originated in some 
form in the 1990s or early 2000s.  Many of the programs are still operating and have been 
continually refined with passing years. 
 
While many programs involve similar transfer types, water transfer terms vary.  In this report 
the term “fallowing” refers to any transfer that conserves water by suspending irrigation on 
cropped land.  The conserved water is often measured in terms of either historical water 
applications or historical crop consumption.  We choose to focus on crop water consumption.  
Although it is more challenging to measure a change in water consumption, such changes are 
the objective of water acquisition programs that seek to free up irrigation water for other uses.   
We refer to water consumption in terms of evapotranspiration (ET).  ET is the amount of water 
used by plants (transpiration) plus the water that evaporates from soil and plant surfaces 
(evaporation).  Water that is applied but not consumed (such as drainage or recharge) is not 
part of ET.3 

II.  Measuring, Monitoring, and Enforcing: Issues and Case Examples 
 This section reviews implementation of measuring, monitoring, and enforcing in 
temporary water transfer programs.  While MME is also important in permanent water 
transfers, it is even more so for temporary transfers because the net economic benefits of 
temporary transfers tend to be smaller.  The aim of this section is to identify successful 
strategies to measure water consumption, monitor conservation, and enforce agreements.  
Failure to consider and address these issues could make temporary transfers infeasible, 
burdened by the weight of excessive measuring, monitoring, and enforcement costs. 
 
In addition to supporting current transfer programs, advances in measuring, monitoring, and 
enforcement can make innovative transfers feasible.  Deficit irrigation is one option.  With 
deficit irrigation, crops are supplied water below their full transpiration potential.  This is an 
attractive water transfer option because it allows farmers to grow their customary crops and 
conserve water at the same time.  Yields decrease with deficit irrigation but profit losses can be 
offset by water conservation payments.  Water savings per field might be small compared to 
fallowing, but deficit irrigation over large areas could add up to significant conservation.  See   
Lindenmayer et al. (2011) or Geers and Raes (2009) for some advantages and disadvantages 
of deficit irrigation. 

A.  Measuring Water Savings 
 As demands on water intensify, the precise amount of water being consumed in 
competing uses is important both for conservation management and for potential water 
transfers.  The transfer of water conserved by cropland fallowing gives rise to a complex 
measurement problem.  If a specific area of cropland is not irrigated, how do buyers know how 
much water is “saved” and potentially available to transfer?  Answering the question of how 
much water would have been used on a field had it been planted, irrigated and harvested can 
be knotty.  The answer depends upon commingling influences including irrigation management 
practices; temperature and rainfall patterns; irrigation practices on neighboring farms; soil 
                                            
3 Traditional and innovative techniques to estimate evapotranspiration are described in greater detail in section 
VII. Appendix: Remote Sensing Techniques. 
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characteristics; economic incentives to plant competing crops; and return flow. 
 
Return flow is an issue because decreases in return flow can damage other water users and 
habitats.  Return flow is water that is applied to crops but not consumed.  It includes drainage, 
recharge, and runoff.  For example, a farmer applies 50 acre-feet of water to his fields each 
year, his crops consume 30 acre-feet, and the remaining 20 acre-feet is return flow.  
Downstream farmers rely on some of this return flow for use on their fields; it also supports 
habitat along drainage canals.  If the farmer sold all 50 acre-feet, the downstream farmers and 
habitat would be injured by the sale.  Likewise, fallowing savings measured in terms of applied 
water potentially exaggerate water savings and lead to insufficient water supply downstream.  
If the farmer is allowed to sell only his consumptive use (30 acre-feet), then the water that 
would have been return flow is left instream for other users.  Not all fallowing programs 
address return flow accounting in their guidelines.  Nevertheless, it is often an important issue 
that should be evaluated.  Return flow that cannot be used for irrigation could still be valuable.  
If it drains into a saline sink, for example, it might have important recreation or habitat value.   
 
Another issue not always considered in water programs is the reliability of conserved water 
measures and what effect this might have on program accountability.  Without reliable records 
of historic water use, the ability to measure consumptive water use savings has traditionally 
been limited.  Some early transfer programs, like Edwards Aquifer Authority (EAA) Irrigation 
Suspension Program, had no concrete way to gauge past water consumption in order to 
calculate conserved water.  Water meters were uncommon, so the program aimed to reduce 
the amount of land in agricultural production instead of aiming to reduce water use by a 
specific amount.  EAA selected land for the program based on the expected effects its 
temporary retirement would have on court-ordered flow levels for environmentally important 
springs.  The land s location, past crops, and irrigation technology were used to rank its effect 
on springflow.  Keplinger et al. (1998) later estimated the program s water savings based on 
weather patterns and irrigation estimates.  However, as water becomes scarcer and transfers 
more expensive, buyers will likely demand more solid evidence of how much water their funds 
are conserving. 
 
A method for estimating how much water will be saved through fallowing and made available 
for transfer should be agreed upon in advance if these types of arrangements are to succeed.  
As the Water Transfer Workgroup (2002) reported, based on California s experience, “The 
inability of interested parties to agree on the volume of transferable water associated with the 
short-term fallowing of agricultural lands has caused substantial controversy and delays in 
approving water transfer proposals.” Methods used to quantify how much water is saved and 
transferrable vary across jurisdictions and transfer cases. Such agreements must be based on 
accepted methods for estimating water consumption, consider local complexities like return 
flow accounting, and be consistent with applicable laws. 
 
Approaches for measuring the amount of water conserved from fallowing and other water 
conservation programs are summarized here. These examples are collected from several 
regions of the western U.S. and from Australia. 
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1. Case Example: Water Transfers Office, California Department of Water 
Resources and Resource Management Division, Bureau of Reclamation, Mid-
Pacific Region 

 In 2009, the California Department of Water Resources Water Transfers Office (CDWR) 
and Bureau of Reclamation (BOR), or Project Agencies, released an updated technical report 
to facilitate water transfers in 2010.  The report applied to water transfers from fallowing, crop 
shifting, or groundwater substitution involving State and Federal contractors, and Project 
Agencies  facilities.  It was created to facilitate water transfer approvals by providing guidelines, 
not to regulate transfers (CDWR and BOR 2009).  Additionally, the Project Agencies have 
reported on several common issues associated with central California water transfers.  The 
reports provide additional background on the complexity of water transfer accounting.4  The 
reports use the term cropland idling instead of fallowing to distinguish between fallowing done 
in normal crop rotations and fallowing done for water transfer purposes.  (We prefer the term 
fallowing because most programs use it). 
 
Sellers conserve water for transfer by fallowing and crop shifting, thereby reducing irrigation 
and on-farm water consumption (CDWR and BOR 2009).  In order for transfers to occur, water 
sellers must demonstrate how fallowing or shifting will reduce consumptive water use.  Sellers 
do this by providing five years of farming history data, maps, proof of water rights, and 
estimated past and current year evapotranspiration of applied water (ETAW).  However, large 
water districts with consistent cropping patterns may not have to provide five years of crop 
history.  The checklist of what is needed to validate water transfers is shown in Figure 1. 
   

                                            
4 “Water Transfer Office—Issues,” CDWR, last modified April 21, 2011, 
http://www.water.ca.gov/watertransfers/issues/ 
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Figure 1 Project Agencies  Water Seller Checklist 

(CDWR and BOR 2009) 
 
The seller estimates the base year and current year consumptive water use (ETAW) to 
calculate how much water is being transferred.  ETAW is calculated in four steps: (1) cropping 
patterns are established; (2) baseline ETAW is estimated based on cropping patterns; (3) 
current ETAW, after fallowing or crop shifting, is estimated; (4) current ETAW is subtracted 
from baseline ETAW.  Step four shows the amount of water available for transfer.  Each of 
these steps is described in more detail below.  The Project Agencies also consider return flow 
when computing water transfer amounts.  In their definition of ETAW they indicate that it does 
not include water lost to deep percolation or conveyance losses (CDWR and BOR 2009). 
 
The cropping pattern is established using five years of crop history and maps.  The maps must 
show district or farm boundaries, routinely irrigated fields, and fields in the proposed transfer.  
If an individual farmer wishes to transfer water, the farmer must submit crop history and maps 
for each proposed parcel.  For individual farms or small water districts, crop histories will be 
used to find significant crop cycles.  Where the cycles are apparent, either a repeating crop 
pattern or a five-year average will be used for the crop pattern.  
 
If the seller is a large water district then the Project Agencies will use the previous year to 
establish the cropping pattern in most cases.  The previous year will be used as long as the 
market for the crops in question has been stable, there has been a normal water supply, and 
acreage in the highest water using crops has been stable.  Acreage stability is determined by 
comparing the previous year s acreage of the highest water using crops to their five-year 
average acreages.  If the most recent year s acreage is within five percent of the five-year 
average acreage, then the district s cropping pattern is considered stable.  If recent acreage is 
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not within this limit, then the Project Agencies will use a more typical year or an average of 
years to establish a cropping pattern.  Table 1 illustrates the hypothetical case of District A 
based on the rules described by the Project Agencies.  District A s 2010 crop acreages of rice 
and sugar beets (their highest water using crops) are within five percent of their 2006-2010 
average acreage.  In this case, 2010 could be used to establish the cropping pattern 
(assuming the normal market and water year conditions were met).  If a consensus on an 
appropriate cropping pattern can t be reached then the Project Agencies will not approve the 
transfer (CDWR and BOR 2009). 
 

Table 1 District A Crop Patterns (hypothetical example) 

Highest water 
use crops 

Average acreage 
2006-2010 

5% of five-year 
average 

2006-2010 acreage 
+/- 5% 

Crop acreage 
2010 

Rice 10,000 500 9,500-10,500 10,250 
Sugar beets 1,000 50 950-1,050 970 
 
The cropping pattern is used to estimate baseline ETAW of irrigated fields.  ETAW includes the 
amount of water used by the crop plus water evaporated from soil and plant surfaces, minus 
water supplied by rainfall or seepage.5  The ETAW calculations assume crop water 
requirements under average rainfall and evaporation conditions.  The amount of water 
considered transferrable by fallowing or crop shifting is the difference between the baseline 
and current ETAW for each field and specific crop fallowed.  Table 2 shows example ETAW 
values.  In a proposal to crop shift from sugar beets to melons on 100 acres, the baseline 
ETAW would be 250 acre-feet, the current ETAW would be 110 acre-feet, and the 
transferrable water would be 140 acre-feet. 
 

Table 2 Estimated ET for Fallowing and Crop Shifting in 2010 

Crop ET 
(in acre-feet/acre) 

Bean 1.5 
Cotton 2.3 
Melon 1.1 
Rice 3.3 

Sugar Beets 2.5 
Sunflower 1.4 
Tomato 1.8 
Source: CDWR and BOR 2009 

 
The ETAW values used in water transfers are provided by CDWR s Land and Water Use 
Office.6  The Land and Water Use Office estimates ETAW annually for 20 crop categories.7  
ETAW is estimated using the Consumptive Use Program Plus (CUP+).  CUP+ uses the daily 
Penman-Monteith and Hargreaves-Samani equations to estimate reference evapotranspiration 
                                            
5 “Models,” California Department of Water Resources Land and Water Use, modified January 3, 2012, 
http://www.water.ca.gov/landwateruse/models.cfm 
6 Tom Filler, Chief, Water Transfer Section, Division of Integrated Regional Water Management, Department of 
Water Resources, email to Lana Jones, October 10, 2010.  
7 “Annual Land and Water Use Estimates,” California Department of Water Resources Land and Water Use, 
modified January 20, 2010, http://www.water.ca.gov/landwateruse/anlwuest.cfm 
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(Orange et al. 2008).  ET estimation and the Penman-Monteith equation are described in the 
Appendix: Remote Sensing Basics. 
 
The Project Agencies prohibit certain crops for water transfers because of difficulties in 
measuring water savings: pasture, alfalfa in the Delta region, deciduous orchards, and 
vineyards.  Certain other transfer proposals are also prohibited because of the difficulty of 
measuring or verifying water savings: removing permanent crops, enrolling groundwater-
irrigated fields, fallowing on lands with shallow groundwater, and using water saved by 
fallowing or crop shifting to increase water use on other land controlled by the contracting party 
(CDWR and BOR 2012). 
 
In addition to the Project Agencies  technical reports on water transfers, the CDWR has 
published 16 common problems on their website with recommendations for how to address 
them.  Issue No. 8 discusses the problem of using normal condition baseline ETAW for 
transfers in years with reduced water deliveries.  The paper recommends developing a new 
baseline for water sellers with reduced 2010 surface water allocations (CDWR 2009b). 
 
If a seller will have a reduced allocation, the baseline estimate will depend on whether or not 
the seller will have to reduce ETAW.  If the seller will not have to reduce ETAW then they must 
provide the Project Agencies with documentation showing how they will provide full ETAW with 
a reduced supply.  The documentation could include water diversion history or conservation 
plans (CDWR 2009b).  If the seller will have to reduce their ETAW then a baseline will be 
calculated based on district efficiency, which equals ETAW/diversions.  Table 3 provides an 
example calculation of an adjusted baseline.  The normal year used to compute district 
efficiency is 2009 and the reduced-supply year is 2010. 
 

Table 3 Adjusted Baseline Calculations 
District A 2009 2010 
Maximum diversion (acre-feet) 100,000 (a) 80,000 (d) 
ETAW (acre-feet) 70,000 (b) TBD 
Efficiency (b ÷ a) 70% (c) - 
Baseline (c * d)  56,000 

Source: CDWR 2009b 
 

In this example, District A s 2010 baseline would be 56,000 acre-feet.  If the district reduced 
ETAW below 56,000 acre-feet, that amount could be transferred.  From the perspective of 
diversions, the District would participate in a transfer in 2010 by diverting less than 80,000 
acre-feet.  Whatever diversion reduction made would create 70% of that amount for transfer.  
For example, if District A reduced diversions by 20,000, it would be able to transfer 14,000 
acre-feet or 70% of the savings.  If the district diverted no water, 56,000 acre-feet would be 
available for transfer.  The baseline could be adjusted above 56,000 acre-feet, subject to the 
Project Agencies  approval, if the District showed that they would increase district efficiency in 
2010.  However, water transfer from crop substitution is capped at the difference between the 
2010 allocation and actual diversions. 
 
An additional issue addressed by CDWR is the use of ETAW to calculate the amount of water 
made available in fallowing and crop shifting programs.  Resolving the ETAW problem is vital 
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because of the growing popularity of water transfers based on fallowing and crop shifting.  
CDWR (2009a) noted the greater role of these transfers in meeting California s water needs 
but added, “there is considerable uncertainty over the amount of water that should be credited 
to the transferring party and how to monitor the idled fields.”  There are two potential problems 
with using current ETAW values.  First, the values may be outdated, particularly for rice, and 
rice fallowing may play a major part in north to south water transfers.  The reliability of outdated 
ETAW estimates is a concern because new crop varieties and refined water use measures 
have been introduced since the estimates were developed. 
 
Second, water seeping from neighboring fields and weed growth may allow significant amounts 
of water to evaporate from fallowed fields (CDWR 2009a).  Water conservation estimates are 
generally based on the assumption that fallowed fields use no water.  The assumption that 
fallowed fields use no water is questioned due to evidence of significant evaporation from 
seepage or weeds.  Hansen et al. (2010) confirmed this suspicion in Colorado with fallowed 
test fields.  The fields averaged seven inches per year ET, only one inch less than fields 
planted with dryland crops. 
 
The BOR is also concerned about ETAW in crop shifting if deep-rooted crops like safflower are 
switched to.  Safflower has low ETAW but its roots may mine deeper water and dry the soil.  
River flows may suffer in following years if there isn t sufficient precipitation to make up for the 
drier soil (CDWR 2009a).  The BOR recommends using the 2009 ETAW values for 2010 and 
undertaking additional research. 

2. Case Example: Imperial Irrigation District, California 
 The Imperial Irrigation District (IID) 2010-2011 fallowing program contracted water for a 
transfer agreement with San Diego County Water Authority, for Salton Sea mitigation, to 
manage their annual Colorado River water use, to payback past year overuse, and to create 
water for storage (IID 2009a). 
 
The 2010-2011 fallowing program was the eighth year of the program.  The 2011-2012 
program is currently underway.8  The fallowing application and contract for participating fields 
has remained largely unchanged in recent years. 
 
The fallowing application requires the basic details needed to establish historical water use on 
a field: the canal, gate, and account number for the field, the crops grown for the last three 
years, and the field acreage (IID 2009a).  The water conserved by fallowing is estimated based 
on a “water use history formula adopted by the IID Board of Directors,” that is adjusted for 
recent water use trends (IID 2010a).  IID s water use history formula is based on water 
deliveries in eight of the last ten years.  IID drops the high and low years and calculates a 
rolling average of the remaining eight years.9  They then examine the trend over the last three 
years.  Using the average and the trend, IID predicts what the next year s water usage would 
have been.10  The calculation is also adjusted if the field was part of a previous fallowing 

                                            
8 “2011-2012 Fallowing Program,” Imperial Irrigation District, accessed April 18, 2012, 
http://www.iid.com/index.aspx?page=396 
9 David Bradshaw, IID Assistant Water Manager, Agricultural Water Management, interview by Lana Jones, 
November 17, 2010 
10 David Bradshaw, IID Assistant Water Manager, email to Lana Jones, March 15, 2010. 
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program.  Fields are allowed to participate up to two out of every four years. 
 
IID pays farmers on a per acre-foot basis for up to six acre-feet per acre.  So, the annual 
average water use is capped (for payment purposes) at six acre-feet per acre.  The final result 
after the historical water use has been adjusted and capped is the field s Annual Baseline.  IID 
then bases the payments made to farmers on the number of irrigable acres enrolled in the 
fallowing program multiplied by the Annual Baseline.  Return flow is not accounted for in the 
Annual Baseline, although IID s Colorado River water allocation includes return flow (BOR 
2011).  IID return flows are tracked in Reclamation s Lower Colorado River Accounting System 
(BOR 2009). 

3. Case Example: Edwards Aquifer Authority, Texas 
 The Edwards Aquifer Authority (EAA) 1997 Irrigation Suspension Program focused on 
increasing springflow and aquifer levels, and helping municipalities through critical droughts 
(Keplinger et al. 1998).  Groundwater rights were not established at the time and most pumps 
were not metered. Consequently, it was impractical to target specific reductions in water use 
from individual wells. Instead, the program aimed to suspend irrigation on approximately 
10,000 acres.  Farmers  bids to participate in the program were scored based on farm location, 
crop, and irrigation technology.  The characteristics expected to yield the largest impact on 
springflow received the highest scores.  The scores were then divided into each farmer s offer 
price to select participating farmers (Keplinger et al. 1998). 
 
Keplinger et al. (1998) estimated the program s impact on factors including irrigation pumping, 
springflow, and aquifer elevation.  Irrigation pumping in the region is highly correlated with 
precipitation so impacts were estimated for wet, average, and dry years.  Keplinger et al. 
analyzed 15 years of irrigation activity to find average pumping values for the five wettest, the 
five driest, and the five median years.  They multiplied the averages for the three types of 
years by the actual number of acres enrolled in the 1997 program (9,669) to estimate the 
reduction in pumping associated with each type of year.  The reduced pumping estimates 
ranged from about 7,700 to 23,000 acre-feet.  1997 turned out to be such a wet year that 
irrigation on fields not participating in the program was estimated to be only half as much as it 
would be in a typical wet year.  As a result, Keplinger et al. (1998) estimated the actual 
reduction in pumping was 3,868 acre-feet. 
 
An earlier Keplinger and McCarl (1995) study was used to estimate the effect of reduced 
pumping on springflow and aquifer elevation.  The study used a regression-based model to 
explain springflow as a function of recharge and pumping in the eastern and western regions of 
the aquifer.  Using the regression model, Keplinger et al. (1998) estimated that 28% of the 
3,868 acre-foot pumping reduction directly benefited current springflow, resulting in an 
increase of 1,083 acre-feet.  They estimated the other 72% (2,785 af) of reduced pumping 
went to aquifer elevation, springflow in later years, other springs, or other aquifers. 

4. Case Example: Klamath Fallowing Programs, Oregon 
 In 2010, water conditions necessitated a fallowing program in the Klamath Water and 
Power Authority (KWAPA) service area.  A March KWAPA notice said that deliveries from 
Upper Klamath Lake would not be sufficient to produce crops on land relying on surface water.  
The fallowing program was implemented to decrease water demand while providing “financial 
assistance” to irrigators agreeing to decrease irrigation with surface water on their land 
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(KWAPA 2010).  
 
Irrigators wishing to participate in the program were asked to submit sealed bids containing a 
description of the land proposed for fallowing including a map, the number of acres to be 
fallowed, the crop irrigated in 2009, the crop that would have been irrigated in 2010, and the 
bidder s per acre financial assistance request.  KWAPA said that they would base their 
selection of lands for the fallowing program on least cost per acre-foot of water saved.  The 
determination of least cost is calculated by the KWAPA Executive Director based on crop, soil 
type, evapotranspiration, and other criteria.  Specifics about the calculation are not provided 
but bidders may challenge the Director s decision (KWAPA 2010). 
 
The Bureau of Reclamation (BOR) managed programs known as the Klamath Water Bank 
from 2001 to 2008.11  A 2005 Government Accountability Office (GAO) report said that lack of 
reliable water measurement equipment and monitoring data in the Klamath Project made 
measuring the water saved by the bank a problem.  The BOR responded to the measurement 
problem by setting up subsequent contracts with irrigators based on reducing their use of 
metered groundwater, instead of the acreage fallowed (GAO 2005).  They introduced 
groundwater-pumping contracts, where groundwater is pumped into canals for others to use, in 
the third program year. 
 
The BOR could not make a reliable estimate of water made available from fallowing based 
solely on the amount of acres irrigated each year in the Klamath Project.  At the time of the 
GAO (2005) report, the BOR said, “the precise impact of the water bank cannot be determined 
because of year-to-year variation in irrigation demand and its determining factors such as 
temperature, precipitation, and crop types.”  The BOR originally assumed that five acre-feet 
were saved per acre fallowed and later revised the estimate to two acre-feet per acre.  The 
BOR later consulted with the USGS for assistance in estimating the total amount of water 
saved by fallowing. 
 
The USGS report concluded that although the water bank likely resulted in increased Klamath 
River flows, the precise amount of water saved was not measurable using streamflow data.  
The 100,000 acre-foot water bank requirement was small compared to the river s 1961-1999 
average annual flow of over 1,500,000 acre-feet in the targeted stretch.  The variability of 
streamflow also made the water bank s impact hard to detect.  Despite being regulated by a 
dam, flow in the targeted river stretch had a standard deviation of 560,035 acre-feet due to 
climate variations.  The increase in streamflow from the water bank was not measurable 
because it was likely within streamflow measurement error (USGS 2005). 
 
The USGS said that net diversions—gross diversions less return flows—probably provide the 
best method to measure the benefits of the water bank despite potential problems with data 
accuracy.  Using diversion and return data from 1961-99, the USGS regressed net diversions 
on net flows into Upper Klamath Lake.  The net diversions from water banks years (2003 and 
2004) were compared to the regression line and were lower than would be expected compared 
to years with similar inflows to Upper Klamath Lake (USGS 2005).  The USGS cautioned that 

                                            
11 “2009 Water Supply Enhancement Study (formerly the Water Bank),” Bureau of Reclamation, last modified 
August 28, 2009, http://www.usbr.gov/mp/kbao/pilot_water_bank/index.html 
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this method must be used carefully because the water bank volumes and the diversion and 
return flow data error are near the same size. 
 
In their conclusion, the USGS said that analysis of evapotranspiration rates in fallowed and 
irrigated fields would be required to obtain accurate estimates of water saved by fallowing.  

5. Case Example: Murray-Darling Basin Cap, Australia  
 In 1995, the Murray-Darling Basin Ministerial Council decided to cap water use in the 
basin.  The volume of the Cap was set at the level of 1993-94 water diversions.  It was set in 
an effort to manage the Murray-Darling Basin in a way that would protect river environments 
and achieve sustainable consumptive use (Flett et al. 2009).  The Independent Audit Group 
was established in 1996 to report on the implementation of the Cap (Cox and Baxter 1996).  It 
has released a report each year since then. 
 
The Cap, like some US programs, is focused on diversions.  The capacity to measure 
compliance with the Cap varies by region and individual measurement systems.  New South 
Wales, Victoria, South Australia, Queensland, and the Australian Capital Territory (ACT) have 
individual caps and are each evaluated separately.  The Independent Audit Group bases their 
report on data provided by each state and the ACT (Flett et al. 2009). 
 
Most Murray River water diverted in South Australia is metered.  According to Flett et al. 
(2009), the state is “well placed to manage diversions within the respective Caps.”  
Queensland began a metering project in 2005 to get all unsupplemented diversions (i.e. 
diversions not taken from regulated public storage) across the state metered.  In New South 
Wales, diversions from unregulated streams are generally not metered although these 
diversions represent less than 4% of the state s long-term Diversion Cap.  Unmetered use is 
estimated based on crop surveys and irrigation requirements (Flett et al. 2009). 

B. Monitoring Compliance in Water Transfer Agreements 
 If accurate measuring is an important goal, then careful monitoring is also important to 
ensure that actual conservation aligns with planned, and often compensated, conservation.  
Depending on the program, monitoring may be coordinated by the party seeking water, the 
water district where the water originates, local government, or federal government agencies.  
Site visits are the most common form of monitoring in the programs surveyed. 
 
Water buyers may be able to decrease the burden of monitoring with careful program 
structuring.  For example, farmers enrolled in IID s fallowing program agree to have their field 
headgates locked making irrigation impossible unless the headgate is tampered with.  
Programs administered by parties that have less control over water delivery can be trickier.  
Water transfer contracts should stipulate that farmers must not use water saved from an 
enrolled field to increase water use on a different field.  Even with such contracts in place, 
fields beyond those enrolled in a program may need to be monitored to guarantee water 
savings. 

1. Case Example: Water Transfer Office, California Department of Water Resources 
and Resource Management Division, Bureau of Reclamation, Mid-Pacific Region 

 The first step in monitoring outlined by the CDWR and BOR—or Project Agencies—is 
reporting.  The seller is responsible for accurate reporting of the fallowing or crop shifting steps 
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taken to make transfer water available (CDWR and BOR 2009). 
 
Verification is the next step in monitoring.  The Project Agencies or the seller, if approved by 
the Project Agencies, will verify the steps taken to make transfer water available.  This part of 
the monitoring program must provide data that can be used to verify the amount of water made 
available for transfer.  Data obtained to verify water savings will come from cropping data; 
maps showing participating fields; Project Agencies  staff field visits; past and current water 
diversions; and, in some cases, field test instruments. 
 
Sellers must provide access to participating fields to the Project Agencies.  Staff may check for 
water leaks, excess weed growth, changes in soil moisture, and shifts to specified crops.  
Areas with high groundwater or seepage may also be monitored with instruments to determine 
evaporation from soil and weeds, which reduce conserved water.  The Project Agencies 
coordinate monitoring but water buyers and sellers must reimburse the Project Agencies for 
costs associated with monitoring activities. 

2. Case Example: Imperial Irrigation District, California 
 In the IID 2010-2011 Program, as with past years  programs, when fallowing contracts 
are finalized on July 1, water delivery headgates for participating fields are locked (IID 2009b).  
IID then takes pictures of locked headgates with the fallow field behind them to monitor 
program participants, as shown 
in Figure 2.  The Program 
Solicitation Announcement 
outlines the steps that must be 
taken for fields that share a 
gate or receive water from a 
gate that supplies other 
structures.  For example, fields 
sharing a gate must have 
verifiable water use records to 
enroll in the fallowing program 
(IID 2009b).  For the case of a 
gate that supplies other fields or 
structures not participating in 
fallowing, a farmer must submit 
a plan for the continued service 
of those structures with their 
program application (IID 2009a). 
 
IID also puts other systems in place to make monitoring participating fields simpler.  The crop 
code in IID s management system is revised so that water cannot be ordered for fields 
participating in the fallowing program.  If water delivery gates cannot be locked then other 
physical blocks are installed on all enrolled fields.  On the ground monitoring takes place as 
well.  Fields are inspected or photo-verified quarterly by IID staff.  The Bureau of Reclamation 
(BOR) additionally validates five percent of enrolled fields (IID 2008).  The BOR visits annually 
and takes pictures of five percent of the enrolled fields in the validation process.  The IID 
fallowing program is part of the Quantification Settlement Agreement (QSA), which requires the 

Figure 2 Locked Headgate and Fallow Field, IID Fallowing 
Program 2010 
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fallowing to be verified.12 

3. Case Example: Edwards Aquifer Authority, Texas  
 The agreements, instructions, and contracts for the 1997 EAA Irrigation Suspension 
Program outline the ways that the EAA may monitor the program.  In their Instructions to 
Offerors, EAA says that they may request additional maps or information about the acreage 
proposed for the program and inspect the property and irrigation system (Keplinger et al. 
1998). 
 
In the Irrigation Suspension Contract, they further state that the participant shall permit 
inspection of their enrolled acres and irrigation system by EAA representatives if given four-
hour notice.  The participant must grant the EAA representative access to their property for 
inspection (Keplinger et al. 1998). 
 
In their more recent Edwards Aquifer Authority Rules (2010a), which governs groundwater 
within and withdrawn from the aquifer, the EAA reserves the right to enter a property to 
investigate rule violations.  Any EAA agent may enter any property at any reasonable time for 
this purpose (EAA 2010a).  Irrigators are required to submit an Agricultural Irrigation 
Assessment Form exhibiting their on-farm irrigation efficiency.  Information submitted on this 
form is subject to EAA verification.  Any irrigator with less than 60% irrigation efficiency is also 
required to submit a Groundwater Conservation Plan.  The Groundwater Conservation Plan 
should outline what Best Management Practices the irrigators are going to implement to 
improve efficiency and an implementation schedule.  EAA requires these irrigators to submit 
Groundwater Conservation Plan status reports every three years (EAA 2010b).   

4. Case Example: Idaho Department of Water Resources 
 The Idaho Department of Water Resources (IDWR) began its Water Transactions 
Program (WTP) in 2003.  The WTP is part of the Columbia Basin Water Transactions Program.  
The primary objective of the WTP is to increase instream flows and that is the focus of the 
monitoring protocols (IDWR 2006). 
 
The IDWR WTP Monitoring and Evaluation Protocol lists seven monitoring methods ranked in 
order of complexity and cost.  Method one uses stream miles.  This method is based on the 
number of miles where additional habitat was created because the stream was reconnected.  
Method two uses photos of points of a stream segment and points above and below it.  The 
points are monitored before and during the water transaction to show increased habitat.  
Method three uses site visits to verify satellite imagery and monitor contract compliance.  
Method four uses stream gauge measurement of flows during the water transaction period.  A 
staff gauge, current metering, or continuous recorder is required with a cross section of 
readings.  Method five uses satellite photos to show that irrigators leasing water are not 
irrigating fields.  Method six uses the Physical Habitat Simulation model to evaluate the 
relationship between increased flow and habitat needs.  This model relates stream data—e.g. 
water depth and velocity—to the needs of target species.  Method seven uses Mike Basin 
models.  These models predict the effect of irrigation changes on downstream flows (IDWR 
2006).     

                                            
12 David Bradshaw, IID Assistant Water Manager, Agricultural Water Management, interview by Lana Jones, 
November 17, 2010 
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IDWR publishes a monitoring report on the Water Transactions Program’s prior year 
transactions.  The 2009 report describes monitoring on 21 transactions that increased flows 
and habitat on over 186 river miles (IDWR 2010).  For example, an August 2009 site visit and 
Landsat images confirmed compliance on a five-year lease on Alturas Lake Creek for 2.66 
cubic feet per second (cfs) of water from May through October.  A stream gauge monitored 
flow in Alturas Lake Creek and a fish survey found 4 salmon in the creek below the original 
irrigation diversion point.  The gauge measured flows of about 20 cfs to 500 cfs during the 
lease period (IDWR 2010). 

5. Case Example: Klamath Water and Power Authority, Oregon 
 The KWAPA 2010 fallowing program contract stipulates that KWAPA and the water 
district where the land is located shall be granted access to the land contracted in the program 
(KWAPA 2010b).  There is no other mention of monitoring in the 2010 contract or program 
documents. 

6. Case Example: Murray-Darling Basin Cap, Australia 
 Monitoring in the Murray-Darling Basin is done on two scales (Garrick et al. 2009).  The 
state government or irrigation companies monitor entitlement holders  water use.  The 
Independent Audit Group (IAG) monitors states and territories and reports progress on 
implementation of the Cap to the Murray-Darling Basin Ministerial Council. 
 
The most recently published audit by the IAG is from 2011.  In order to audit progress on Cap 
implementation, the IAG gathered statistics on actual diversions in the 2010-11study period.  
They use these statistics to quantify total diversions and comment on Cap compliance.  They 
also look at proposed diversion management rules and any problems with implementation of 
these rules.  In the months before the audit was published, IAG met with state and ACT 
representatives to compare their water use to their caps and discuss progress (Cox et al. 
2011). 

7. Case Example: USDA Wetlands Reserve Program 
 The USDA s Wetlands Reserve Program (WRP) pays farmers, ranchers, and Indian 
Tribes to retire agricultural land in order to restore, protect, and enhance wetlands.  Fiscal year 
2010 had the highest single year enrollment in the program: 272,000 acres.  As of November 
2010, there were 2.3 million acres enrolled (USDA 2010). Landowners may participate in the 
program in three ways.  The land may be enrolled with a permanent conservation easement 
and the USDA pays up to the full easement value and restoration costs.  Alternatively, the land 
may be enrolled in a 30-year easement and the USDA pays up to 75% of both the easement 
value and restoration costs.  Finally, the land may be enrolled in a restoration cost-share 
agreement with no easement and the USDA pays up to 75% of restoration costs (USDA 2008). 
 
The WRP Manual says that state conservationists will develop processes to monitor 
easements and restoration agreements (USDA 2006).  Restoration agreements are required to 
be monitored as restoration practices are being implemented and then at least once a year for 
the life of the agreement.  For easements, annual site visits are required until conservation 
practices are established.  Once established, sites may be monitored either annually by visit or 
annually by remote sensing with a site visit at least every three years.  A monitoring checklist 
must be completed each year. 
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The monitoring checklist is a three-page form with questions about land ownership, conditions, 
and the status of easement compliance.  Pictures are required from designated photo points 
for site-visit years.  If easement conditions are not being met, there is space for descriptions of 
the violation and photos are required.  Conservation goals are tracked with questions about 
habitat restoration, birds, vegetation, and restoration practices.  Each question includes space 
for the reviewer to make comments about what changes are needed.  A Practice and Cost 
Worksheet is provided at the end of the document to list what modifications are needed and to 
estimate their cost (USDA 2000). 

C. Enforcing Water Transfer Agreements 
 
 Water transfer enforcement receives little attention in most fallowing program 
agreements.  Program authorities may instead rely on existing state or district water permit 
enforcement procedures.  The Edwards Aquifer Authority, for example, requires groundwater 
conservation plans from some irrigators but does not post enforcement procedures for the 
plans.  However, they post the Edwards Aquifer Authority Rules, which describe enforcement 
procedures for all persons with Authority permits.  
 
New water transfer programs could rely on local enforcement procedures or could choose to 
add enforcement language to transfer contracts.  If a fallowing program wishes to include 
enforcement in transfer contracts, then drafters could look to other states or water districts for 
examples.  Examples from a Texas groundwater district, Utah state, an Oregon water and 
power agency, and an Australian river basin are provided here. 

1. Case Example: Edwards Aquifer Authority Rules, Texas 
 The Edwards Aquifer Authority Rules (2010a) detail how the Authority will manage 
water in the basin.  The Rules include procedures for water applications, fees, groundwater 
withdrawals, water quality, and enforcement.  The enforcement chapter of the Rules applies to 
any person who violates the Authority s rules or the terms or conditions of an Authority permit. 
 
The Board of Directors of the Authority outlines six enforcement actions that it may take in the 
event of a violation.  It may take these actions after giving the potential violator 10-day written 
notice and an opportunity to be heard at a Board meeting.  The board may (1) suspend 
processing any pending applications; (2) suspend permits or other authorizations; (3) issue 
orders to cease and desist, and to take corrective action; (4) issue orders to plug, seal, or mark 
a well; (5) take any other action authorized by law including assessing penalties and filing civil 
suit; and (6) enter into a settlement agreement (EAA 2010a). 
 
The Authority reserves the right to make a well physically inaccessible if the Rules are being 
violated.  The Board may plug, seal, or mark a well if, for example, permit conditions are not 
being met.  The sealing of a well would be undertaken to prevent unlawful groundwater 
withdrawals. 
 
In the case of judicial action, the Authority would file a civil suit in the state district court.  It may 
file suit for an injunction, civil penalties, attorney s fees and other costs associated with the suit.  
The civil penalties can range from $100 to $10,000 per violation per day plus attorney s fees 
and costs. 
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2. Case Example: Utah Division of Water Rights 
 The Utah Division of Water Rights provides a two-page brochure—Enforcement 
Procedures: A Brief Explanation (UDWR 2009)—outlining the actions they may take in the 
event of a water rights violation.  If UDWR receives a referral of a violation, they will first 
investigate and evaluate.  They will attempt to make sure the violator is aware of the 
investigation and if needed issue a Notice of Violation or Cease and Desist Order.  A 
preliminary conference or hearing may then be held if requested, followed by a Final Order.  
Finally, they may investigate compliance. 
 
UDWR offers different courses of action for violations depending on the water user s response.  
If the accused person disputes the violations he may request a hearing and file rebutting 
evidence.  If the accused person recognizes that they may have committed a violation he may 
request a hearing to discuss a resolution and if an agreement is reached a Consent Order will 
be issued.  The Consent Order is a settlement.  It cannot be reconsidered or appealed.  If the 
accused person does not respond, a Default Order will be issued (UDWR 2009). 
 
UDWR may require violators to pay fines or replace water.  Fines accrue on a daily basis from 
the first day of the violation and may continue until the violator is in compliance.  UDWR 
calculates fines based on factors including the quantity of water taken, impact to others, and 
whether the violation was knowingly committed.  Costs for enforcement, inspections, and 
replacement water may also be ordered.  A violator may be required to replace water and 
submit a plan describing how it will be replaced.  Owned or leased water may be used as 
replacement water.  
 
In the event that violators don t comply with a Final Order or pay fines and enforcement costs, 
the fines and costs may continue to accrue.  UDWR may then report the violator to a collection 
agency and take legal action to enforce the Final Order. 

3. Case Example: Klamath Water and Power Authority, Oregon 
 Enforcement of the 2010 KWAPA fallowing program is limited to the termination of the 
contract.  If the contracting irrigator breaks any of the terms of the contract, or doesn t allow 
KWAPA or the water district to access the land to monitor compliance, then the contract will be 
terminated.  If the contract is terminated, the irrigator will not receive any contract payment 
(KWAPA 2010b). 

4. Case Example: Murray-Darling Basin Cap, Australia 
 The Independent Audit Group (IAG) reported an area in New South Wales that 
exceeded their Cap in 2008-09: Baron/Upper Darling and Lower Darling Valley.  The area 
exceeded their cap by an average of seven percent since 1997 and the IAG recommended a 
special audit.  The IAG (Flett et al. 2009) said that mechanisms are needed to address the 
issue and that the excess water use “serves to undermine the Cap s effectiveness and its 
enforcement in the eyes of the wider community.” 
 
The groundwork for the first Murray-Darling Basin Authority (MDBA) Basin Plan was laid in the 
Water Act of 2007 (MDBA 2010).  As part of the Basin Plan development process, the MDBA 
released an overview to the plan this year.  The enforcement activities that the MDBA may 
undertake as prescribed by the Water Act of 2007 are summarized in the overview. 
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Actions that the MDBA is authorized to take to enforce the Basin Plan include: entering 
properties to gather evidence or monitor, applying to a court for an injunction or civil penalty, 
and issuing enforcement notices. The MDBA will be the enforcement agency of the Basin Plan 
but it will leave enforcement of individual entitlement holders to the states.  The MDBA will also 
not use its enforcement powers as a first resort, preferring collaborative action (MDBA 2010). 

D. Summary and Implications from Case Examples on Measuring, Monitoring, 
Enforcing 

 Significant resources have been spent in the U.S. and elsewhere to refine measuring 
water savings in voluntary programs to reduce agricultural use.  Less attention has been paid 
to the monitoring and enforcement of programs.  Monitoring may be comparatively 
straightforward in fallowing programs with the use of intermittent site visits and satellite 
imagery.  Crop shifting programs would require more sophisticated monitoring techniques.  
However, with recent advances in remote sensing crop and ET mapping, monitoring crop 
shifting may be easier than it was in the past.  Enforcement is only briefly mentioned in most 
program documents and is generally limited to the cancellation of payments. 
 
Despite the unequal focus on measuring, monitoring, and enforcing water transfers, all three 
aspects could be improved.  Innovative approaches are emerging in other water use contexts 
that may be useful in water transfer programs.  Some of these emerging practices are 
examined in the following section. 

III. Innovations: Options for Improving Measuring, Monitoring, and 
Enforcing 

 In this section we summarize ideas for improving MME protocols through use of GIS 
tools, remote sensing imagery, and other innovative ideas that have been either proposed or 
utilized in fallowing programs.  We also look at strategies that may be adapted from other 
programs seeking to alter agricultural practices and measure or monitor those changes. 

A. Why Are Innovations Needed? 
 Improving current measuring, monitoring, and enforcing of temporary water transfers will 
benefit water sellers as well as buyers.  If employing innovative techniques reduces the costs 
of monitoring water transfers, those savings can be transferred to sellers in the form of larger 
payments, or to buyers to be used for additional conservation. 
 
Water conservation programs lacking careful measuring, monitoring, and enforcement put 
themselves at risk of wasting money and water.  In his 2010 report on the lessons learned from 
the Australian Water Reform Program, Young points out that although the Murray-Darling 
Basin Cap prevented states from issuing new water licenses, water use expanded 
considerably and water dependent ecosystems declined.  Young (2010) attributes the over-
allocation problem to the lack of on-farm monitoring of unmetered uses like tree plantings, and 
reduced return flows from irrigation efficiency improvements.  He concludes, “it will be 
necessary to manage all forms of water use with greater precision.” 

B. A Framework for Designing Monitoring Policy 
 Monitoring policies are examined in greater depth here.  The underlying ideas relate to 
measuring policies as well.  The USDA Economic Research Service (2005) breaks traditional 
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monitoring down to two basic choices: intensive or minimal.  Intensive monitoring requires 
visits to many farms by qualified staff.  It is expensive and ties up staff time.  Minimal 
monitoring may compensate for fewer visits with higher fines to encourage compliance.  It may 
let problems slip by and the associated high fines may be unpopular with farmers (ERS 2005). 
 
The ideal might then be intensive monitoring that didn t tie up staff but still avoided the use of 
heavy fines.  Innovative systems using automated and remote technology could accomplish 
this goal.  Alternately, refining the monitoring approach by targeting certain groups or offering 
compliance rewards may increase compliance without increasing monitoring and enforcement 
costs. 
 
The problem of determining the efficient amount of compliance monitoring can be modeled by 
making assumptions about farmers  risk preferences and the monitoring agency s desired 
environmental outcomes.  In the framework laid out by Choe and Fraser (1999), a farmer 
enrolled in an environmental protection scheme would prefer to do the least amount of 
conservation while getting the highest payment possible.  The agency contracting for 
conservation may not be able to determine whether the farmer is conserving as agreed, 
introducing a moral hazard problem.  In the water transfer case this would be equivalent to a 
farmer enrolling in a program but then using the water to continue growing crops, possibly 
bringing new fields under irrigation, despite being paid to conserve. 
 
Monitoring is costly but a program that pays for water and gets none is more costly still.  
Programs with good monitoring practices will be more credible and therefore more likely to 
continue to be viable programs into the future.  The water-buying agency must decide how 
much to monitor participating farmers.  There is a trade-off between the amount of monitoring 
and the cost effectiveness of a program.  At one extreme, complete monitoring could ensure 
total contract compliance by farmers but at a very high cost.  The efficient level of monitoring 
will vary by program.  Generally, efficient monitoring should encourage farmer compliance 
enough that the benefits of the transfer program are reasonably assured while monitoring costs 
are kept below an appropriate threshold.  A threshold of one percent of total program costs (or 
less) might be used as a starting point.  The costs section of this paper provides examples of 
the types and extent of monitoring costs. 
 
In Choe and Fraser s (1999) model, the efficient level of monitoring depends on farmer and 
agency characteristics.  The farmer is characterized by his costs, conservation efforts and risk 
preferences.  The farmer is rewarded with a payment based on conservation effort.  The 
payment may be negative, i.e. a fine, if the farmer conserves less than the agreed upon 
amount.  The agency is characterized by its monitoring costs, monitoring effort, and choice of 
payments or fines. 
 
The agency chooses their monitoring effort, payment and fine levels in an attempt to maximize 
conservation benefits less expected payment to the farmer and monitoring costs.  The farmer 
chooses their level of actual conservation based on the agency s monitoring effort, the 
payment the farmer will receive for conservation, and the fine for cheating.  The optimal model 
result, which varies with farmer risk aversion and monitoring costs, ranges from schemes with 
low monitoring and high payments (or fines) to schemes with intensive monitoring and a 
smaller range of payments and fines (Choe and Fraser 1999).  
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In the end, these models indicate that in all cases adopting better monitoring technology will 
benefit monitoring agencies in multiple ways.  Choe and Fraser (1999) conclude that policy-
makers should reduce monitoring costs by using advancing technologies, like satellite-based 
remote sensing.  Remote sensing might also help reduce measuring costs. 

C. Innovations in Measuring, Monitoring, and Enforcing 
 Measuring, monitoring, and enforcing innovations examined in this section range from 
those gaining acceptance in agricultural uses to those not yet tried or tested.  Innovative 
techniques and technologies could increase measuring or monitoring accuracy and may not be 
expensive.  However, the innovations need to be carefully matched to local needs and to 
appropriate uses.  A technology useful for monitoring whether an enrolled field is being 
fallowed may be impractical for measuring the amount of water conserved by fallowing.  
Likewise, a technology suited to measuring water savings might be too complicated or 
expensive if all that s needed is verification that no irrigation has taken place on enrolled fields.  
New technology installation is required in some cases but existing technology or policy 
adjustment can also be used as a low-cost means to increase measuring, monitoring, and 
enforcing power.  

1. Remote Sensing 
 Free remote sensing image archives, provided by NASA and the USGS, now span over 
three decades.  This collection is an enormous, mostly untapped, resource for water 
managers.  Although remote sensing is beginning to be used in official capacities, its full 
potential is not yet realized.    The Bureau of Reclamation uses remote sensing data to map 
crops and riparian vegetation in the Lower Colorado River Basin (BOR 2009) and has also 
used remote images to monitor fallowing programs (DOI 2009).  Researchers in the U.S. are 
estimating field-specific evapotranspiration (ET) using satellite images (Allen et al. 2007b; 
Elhaddad et al. 2011; Glenn et al. 2011; Piñón-Villarreal et al. 2010). 
 
More and more conservation programs, including the USDA s Wetlands Reserve Program 
(USDA 2006) and the Idaho Department of Water Resources  Water Transfer Program (IDWR 
2006), are using satellite images to monitor participants.  Measuring water savings (based on 
changes in ET) with satellite images is a promising, though more complex, innovation.  Samani 
et al. (2007) tout the use of remote sensing to calculate ET, “over a large scale for various 
crops, riparian vegetation and soil conditions without the complications associated with 
traditional methods of assessing ET.” 
 
Four uses of remote sensing to monitor and measure water use are examined here.  The first 
two cases are primarily suited for monitoring participant compliance; the second two are suited 
for measuring water savings.  In the first case, the Bureau of Reclamation s Lower Colorado 
River Accounting System (LCRAS) uses satellite imagery together with a GIS database to map 
vegetation annually.  Once crops are mapped, the BOR estimates ET using classic crop-
coefficient methods.  In the second case, the National Agricultural Statistics Service s 
CropScape uses satellite images to produce crop cover maps for major crops all over the U.S.  
In the third case, surface energy balance methods combine thermal satellite images with 
ground-based weather data to estimate evapotranspiration.  In the fourth case, vegetation 
index based methods combine indexes like the Normalized Difference Vegetation Index (NDVI) 
and traditional ET methods to estimate a relationship between local vegetative cover and ET. 
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For a detailed description of evapotranspiration (combined evaporation and transpiration) 
estimation and introduction to remote sensing and its use in water measuring and monitoring, 
please see the appendix: Remote Sensing Techniques. 

a) Monitoring conservation 
 Programs wishing to adopt remote sensing could start by monitoring fields using 
satellite images.  With 30 by 30 m pixels (.22 acres), Landsat images would be detailed 
enough to show fallowing on fields as small as a few acres.  MODIS images, with a 250 by 250 
m pixel size (15.44 acres), might be used to monitor large fields.  The two examples below 
describe monitoring using remote sensing. 

(1) Lower Colorado River Accounting System 
 The Bureau of Reclamation Lower Colorado Regional Office (BOR) reports diversions, 
return flows, and consumptive use of water diverted from the Colorado River below Lee Ferry 
in their annual Decree accounting reports.13  These reports are produced to satisfy the U.S. 
Supreme Court s 1964 Arizona v California decree.  The LCRAS was created to refine 
agricultural consumptive use estimates from Hoover Dam to Mexico using 
evapotranspiration.14  The LCRAS reports have been produced in addition to the Decree 
reports since 1995.  
 
LCRAS reports provide estimates of evapotranspiration (ET) for three ground covers: irrigated 
agriculture, riparian vegetation, and open water.  The BOR uses remote sensing data from 
satellite images and GIS mapping to identify the different ground cover areas along the 
Colorado River, which are then stored in a GIS database.  The satellite images come from 
Landsat 5, Landsat 7, and Terra satellites (BOR 2009).  Ground surveys are also collected on 
about 12% of irrigated fields.  Almost two thirds of the ground survey data is used to classify 
crop group images.  The remaining ground surveys are used to check the accuracy of the 
classifications (BOR 2009). 

 

                                            
13 “Lower Colorado River Water Accounting,” Bureau of Reclamation, modified January 2012, 
http://www.usbr.gov/lc/region/g4000/wtracct.html 
14 Ibid. 
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The spectral values obtained from the remote sensing images are used to differentiate ground 
covers.  The BOR has analyzed the spectral values of ground reference sites to create spectral 
statistics for the different ground covers.  They also created a spatial relational database 
containing all irrigated field borders.  Using remotely-sensed spectral data and the spatial 
database, the BOR identifies the crop groups grown on each field each year (BOR 2009).  In 
2008, the BOR identified 28 crop groups.  Crop groups included alfalfa, small grains, lettuce, 
idle, and fallow.  The BOR calculates ET based on crop groups instead of calculating ET for 
each individual crop variety.  Figure 3 shows a partial Landsat 5 image of the Salton Sea and 
Imperial Irrigation District from the LCRAS (BOR 2009).  The image shows a color composite 
of bands 4, 3, and 2 from Landsat 5 s TM instrument.  It is false color, with band 4 (infrared) 
shown as red, band 3 as green, and band 2 as blue.  This coloring makes vegetation stand out 
because green vegetation reflects infrared light.  Vegetation shows up in shades of pink to dark 
red depending on type and growth stage.15 
 
The BOR does not estimate ET for idle or fallow fields although they do identify them as crop 
groups.  Although the BOR does not estimate ET values for fallow or idle fields in the LCRAS, 
this does not mean that these fields have zero water use.  As noted by the California 
Department of Water Resources, water seeping from nearby fields and weed growth may allow 
significant amounts of water to evaporate from fallowed fields (CDWR 2009a). 
 
A fallowing monitoring policy could be adapted from the BOR s method for identifying fields 
and ground cover.  Their crop group mapping accuracy in 2008 was over 90% accurate (BOR 
2009).  Accuracy in the detection of fallow versus crop groups was not reported separately, 

                                            
15 “An Introductory Landsat Tutorial,” NASA, last accessed June 5, 2012, 
http://zulu.ssc.nasa.gov/mrsid/tutorial/Landsat%20Tutorial-V1.html  

N 

Figure 3 Imperial Irrigation District Landsat 5 TM Image, acquired 
May 1, 2008 (BOR 2009) 
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although the difference between crops and fallow fields is probably easier to detect than 
differences between types of crops, particularly late in the growing season when crop 
vegetation is mature. 
 
Accuracy depends in part on field size.  Field size is not specified in the LCRAS, but fields in 
the basin tend to be large.  Landsat TM pixels are 30 by 30 meters.16  A one-hectare field, for 
example, would contain about 11 pixels.  As a rough rule of thumb, monitoring fields larger 
than one hectare by remote sensing should be feasible depending on field shape.  Monitoring 
smaller fields by Landsat could be possible but local images would need to be consulted.  In 
Figure 3, a common field size is about 65 hectares (160 acres).  Landsat TM resolution for 
fields of this size is over 700 pixels.  In programs that wish to use Landsat as the primary 
monitoring method, minimum field size should be taken into account during enrollment. 
 
Remote sensing data might also offer future potential for automated monitoring.  Once fallowed 
fields were identified in a GIS database, satellite image retrieval and spectral comparison might 
be automated.  If the spectral data for a fallowed field fell outside expected fallow parameters, 
the monitoring agency could verify on the ground. 

(2) CropScape and the Cropland Data Layer 
 CropScape17 is the online geospatial data and visualization service of the Cropland Data 
Layer produced by the National Agricultural Statistics Service (NASS).  CropScape was 
unveiled in January 2011.  The Cropland Data Layer (CDL) contains information about the type 
and location of over 100 major crops grown in the U.S.  The CDL uses images from Deimos-1, 
UK-2, Waifs, and Landsat 5 satellites.18  CropScape is the online portal for viewing the CDL.  It 
doesn t require specialized software to view or download the spatial data.  CropScape s uses 
include land cover monitoring and biodiversity assessment (NASS 2011). 
 

CropScape imagery is produced at a sufficient scale to monitor individual fields—30 meters.  
However, at this time it is only useful for historic, not real time, monitoring.  NASS does not 
release CDL data during the growing season because of its possible detrimental effect on the 
market and investors; and because it is unverified until the growing season is over (Mueller 
2011).  Early in the growing season it can also be difficult to distinguish fallowed fields from 
other fields, including rangeland (Mueller 2011).  CropScape s release schedule limits its use 
as a real-time fallowing monitoring tool.  However, it provides a detailed example of how GIS 
and satellite images can be combined for agricultural monitoring.  Agencies might be able to 
develop a local real-time monitoring tool using CropScape as a guide.   
 
For measuring actual reductions in water consumption, it could be used to establish past 
cropping patterns and estimate fallowed water savings.  Its suitability will depend on the 
program location, whether the crops grown are among the over 100 crop types that CropScape 
supports, and the complexity of cropping patterns.  Figure 4 shows an example of a partial 
CropScape, CDL image of Alamosa County, CO from 2011.  Major crops in Alamosa include 

                                            
16 “Land Cover Analysis,” NOAA, last accessed April 20, 2012, http://www.csc.noaa.gov/crs/lca/faq_gen.html 
17 “CropScape – Cropland Data Cover,” USDA NASS, last accessed April 20, 2012, 
http://nassgeodata.gmu.edu/CropScape/ 
18 “About CDL,” USDA NASS, last accessed April 25, 2012, 
http://www.nass.usda.gov/research/Cropland/SARS1a.htm 
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potatoes (rust), barley (hot pink), and spring wheat (light brown). 
 

 
Figure 4 CropScape CDL Alamosa, CO 2011 

 

b) Measuring conservation 
 A more advanced application of remote sensing involves using images to estimate 
actual farm field evapotranspiration.  Remote sensing models to estimate ET have developed 
along two main lines: surface energy balance or vegetation index.  Bastiaanssen and others 
have been refining the use of an energy-balance model coined SEBAL for over 15 years to 
estimate actual ET (for example, Bastiaanssen et al. 2005).  Researchers in the Western U.S. 
have been working more recently to tailor these models to local climates and needs (Allen et 
al. (2007b) in Idaho; Piñón-Villarreal et al. (2010) in New Mexico; Taghvaeian (2011) in the 
Lower Colorado River Basin).  ET models based on vegetation indexes have developed as an 
alternative and a complement to energy-balance models (Glenn et al. 2011; Hunsaker et al. 
2007; Nagler et al. 2009). 
 
The availability of historic as well as current remote sensing imagery gives users more options 
for measuring water conservation.  Fallowing programs that estimate water savings using 
cropping pattern and crop coefficients could replace coefficients with remotely sensed ET.  
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Alternately, fallowing programs could estimate water savings by comparing remotely sensed 
ET on fallow fields and cropped fields in the same time period.  In the first, or fixed-field option, 
ET would be estimated using remote sensing for the enrolled field over two time periods.  The 
first period would be representative of historic cropping on that field.  The second period would 
be the current fallow or crop shifting condition.  Water conservation would be measured by 
taking the difference of ET over the two periods.  In this case, the measurement would have to 
be adjusted to take differences in potential ET into account.19  In the second, or cross-field 
option, measurement would be based on a comparison of ET on two fields during the same 
time period.  The participating field would be engaged in crop shifting or fallowing.  A matching 
field would be chosen based on its similarity to historic cropping on the participating field.  
Water conservation would be measured by taking the difference in estimated ET on the two 
fields.  
 
Remote-sensing ET models are complex.  To date, packaged software to run these models is 
not available.  The investment required to implement them may not be justified in all programs.  
In areas with sufficiently large fields, remote sensing could be used to directly estimate ET 
changes on fields enrolled in conservation programs (size restriction based on spatial 
resolution of satellite images).  If fields were not large enough for reliable remote ET 
estimation, water agencies might use remote sensing to update local crop ET coefficients 
instead of using traditional lysimeter and crop coefficient studies.  A lysimeter measures actual 
evapotranspiration from crops by isolating the crops and tracking water going in and out of the 
lysimeter.  Remote sensing offers a promising alternative for measuring water conservation in 
places where other measuring choices are either impractical or outdated. 

(1) Surface energy balance 
 Surface energy balance (SEB) models use thermal satellite images to estimate ET.  
They are based on the principle that the energy arriving at and leaving a field surface must 
balance.  As water evaporates and transpires it uses energy, so ET is a factor that can be 
estimated in the surface energy balance.  Researchers have developed many SEB models.  
An example model, METRIC, is described here.  Others include REEM (Samani et al. 2007), 
and ReSET (Elhaddad et al. 2011).  ReSET is described in section VII. Appendix: Remote 
Sensing Techniques. 
 
METRIC is an energy-balance method for mapping evapotranspiration at a moderate scale 
(limited by thermal image spatial and temporal resolution).  The maps can be used for water 
rights conflicts, groundwater management, and determining actual ET at many scales (Allen 
2005), although it is unsuitable for real-time irrigation scheduling.  METRIC uses thermal 
images from Landsat satellites.  Two Landsat (5 and 7) satellites follow overlapping 16-day 
imaging schedules with an offset of 8 days.  However, Landsat 5 imaging was taken offline in 
November 2011 due to a rapidly degrading component.  The USGS announced in May 2012 
that Landsat 5 TM ceased regular acquisitions.20  ET is interpolated between the satellite 
passes or possibly longer if images are not cloud free.  Working with this schedule, METRIC 
offers a way to measure field water use at a seasonal scale.  As farmers irrigate, their fields 

                                            
19 “Water Transfer Design and Verification,” SEBAL North America, last accessed April 25, 2012, 
http://www.sebal.us/ 
20 “Landsat 5 Thematic Mapper Ceases Routine Acquisitions - Update,” USGS, May 8, 2012, 
http://landsat.usgs.gov/mission_headlines2012.php  
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become cooler because evapotranspiring water absorbs energy.  This temperature difference 
is what the satellite images highlight.  METRIC combines data from Landsat with ground-based 
reference ET to boost accuracy (Allen 2005).  A video overview of how Landsat imagery can 
be used to estimate ET is available from NASA.21 
 
METRIC offers a potentially cost effective, accurate way to measure water conservation using 
Landsat data.  To date, six Landsat satellites have captured data going back over three 
decades,22 so ET can be estimated for prior as well as current years.  Landsat technology has 
changed over time however, and older data may be harder to work with.  Most current 
applications, like METRIC, use Thematic Mapper (TM) imagery.  TM was first introduced on 
Landsat 4, launched July 16, 1982.23.   
 
No major capital investments are required to implement METRIC although local weather 
stations are required.  Allen (2005) lists three necessities for estimating ET using METRIC: 
high-resolution thermal satellite images, good quality weather data, and an “experienced, 
thinking human at the controls.”  Given that Landsat images remain free and that local weather 
station data is not hard to come by, the limiting factor for implementing these kinds of models is 
probably staff training.   
 
The NASA/Goddard Space Flight Center Scientific Visualization Studio has created an 
animation showing visible, thermal, and METRIC ET images of an agricultural area in Idaho.  
Figure 5 shows Landsat s visual bands: 1, 2, and 3.  Figure 6 shows Landsat s thermal band: 
6.  Figure 7 shows ET for the same area and day, calculated using METRIC. 
 

 
Figure 5 Landsat Visual Image of Idaho Agriculture24 

 

                                            
21 Shoemaker, J. 2009, “Landsat: A Space Age Water Gauge,” NASA,  
http://www.nasa.gov/topics/earth/features/landsat_water.html 
22 “From the Beginning,” NASA, modified April 19, 2012, http://landsat.gsfc.nasa.gov/about/history.html 
23 “Landsat 4,” NASA, modified April 19, 2012, http://landsat.gsfc.nasa.gov/about/landsat4.html 
24 “NASA/Goddard Space Flight Center Scientific Visualization Studio,” NASA, last accessed April 20, 2012 
http://svs.gsfc.nasa.gov/goto?3632 
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Figure 6 Landsat Thermal Image of Idaho Agriculture25 

 

 
Figure 7 METRIC ET Map Created with Landsat Data of Idaho Agriculture26 

 

(2) Vegetation index 
 Vegetation index (VI) methods are a less computationally intense way to estimate ET 
with remote sensing.  Simplified versions of these methods might also be used to monitor 

                                            
25 “NASA/Goddard Space Flight Center Scientific Visualization Studio,” NASA, last accessed April 20, 2012, 
http://svs.gsfc.nasa.gov/goto?3632 
26 Ibid. 
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conservation.  Most vegetation index (VI) methods estimate the transpiration part of ET by 
comparing the amounts of red and near infrared light in an image.  The Normalized Difference 
Vegetation Index (NDVI) is a commonly used VI.  Its values range from -1 to 1.  NDVI for 
barren areas is close to zero.  It is moderate for shrub and grassland (0.2 to 0.3) and high for 
rainforests (0.6 to 0.8).27 
 
Vegetation indexes are used in conjunction with ground-based reference ET (ET0) to estimate 
ET.  As part of their implementation, VIs must be calibrated by being regressed against ground 
ET measurements in the area where ET will be estimated.  Empirical relationships are 
established between the VI, ET, and weather data to find the local correlation between 
vegetation cover and ET (Senay et al. 2011).  VI methods cannot estimate evaporation like an 
SEB can, but plant transpiration is the larger part of ET and often the major unknown (Nagler 
et al. 2009).  Once calibrated, VI methods can predict actual ET. 
 
The main advantage of VI methods compared to SEB is ease of calculation.  Rafn et al. (2008) 
say their NDVI method, "is relatively fast, easy, and requires little knowledge of evaporation 
physics and aerodynamics.”  Tang et al. (2009) compared the Landsat-based METRIC with a 
MODIS-based modified VI approach in the Upper Klamath River Basin in Oregon.  Their 
comparison showed a tendency for the VI approach to underestimate seasonal ET and for 
METRIC to overestimate it, compared to surface flux observations.  The primary disadvantage 
of vegetation index ET estimation is the focus on transpiration only. 

2. Precision Irrigation 
 In the Flint River Basin, Georgia, a collaboration that began in 2004 to conserve water 
by making central pivot irrigation more efficient has since saved billions of gallons of water 
(TNC 2010).  The Nature Conservancy, Flint River Soil and Water Conservation District, and 
the U.S. Department of Agriculture formed the Flint River Basin Partnership and have worked 
with farmers in the region to install the variable rate irrigation (VRI) systems responsible for the 
water savings.  VRI systems are limited to use with sprinkler irrigation.  They are also 
expensive, requiring regional and farm level infrastructure investments.  Although the expense 
could be hard to justify solely for improved measuring or monitoring, VRI and other precision 
irrigation technologies could benefit farmers by improving yields, and lowering water use and 
associated input costs.  This potential, combined with improved measuring and monitoring 
benefits for water transfer programs, could make them feasible in areas with multifaceted water 
conservation programs. 
 
In a VRI system, a GPS is mounted on a central pivot or lateral move sprinkler irrigation 
system.  A controller on the sprinkler uses soil moisture data collected from wireless monitors 
to manage water application rates.  As the pivot moves around the field its position is tracked 
via GPS and valves on each sprinkler nozzle automatically open and close to provide precise 
irrigation (Watson and Scarborough 2010).  Figure 8 illustrates how water application rates 
might vary across a field.  The soil moisture monitors collect real-time data and send it via 
wireless broadband network to farmers.  Farmers can then adjust irrigation schedules so water 
is applied only as needed (Watson and Scarborough 2010). 
 
                                            
27 J. Weier and D. Herring. “Measuring Vegetation (NDVI & EVI),” accessed February 20, 2012, 
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/ 
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Figure 8 Variable Rate Irrigation System Illustration28 

 
Regenesis Management Group, a Denver-based company founded in 2009, is testing a similar 
system in Colorado.  The system, called SWIIM (Sustainable Water & Innovative Irrigation 
Management), feeds field-based water and crop data instantly to computers.  Using the data, 
irrigation can be turned on and off when stream gauges or soil sensors measure the need to 
do so (CWI 2011).  Regenesis hopes to be able to use the system to support water transfers.  
Precise water use measurements taken and stored by the system can be used to support 
farmers  transfer proposals, making water transfers easier to arrange. 
 
Precision irrigation systems could support fallowing programs in two ways: measuring 
conserved water and monitoring contract compliance.  A few seasons after such a system was 
installed, applied water records could be used in crop shifting or deficit irrigation programs.  
Water application records could be used to validate crop water savings when irrigators shift to 
lower water use crops.  They could also provide evidence of reduced water application in 
deficit irrigation agreements. 
 
The soil moisture monitors used in precision irrigation could be used to monitor fallowing 
programs.  Where wireless broadband network was available or could be installed, remote soil 
moisture monitors could be placed in fallowed fields.  Monitors with GPS units could transmit 
their position and soil moisture conditions to a central location.  An automated system could be 
programmed to email a monitoring agency if the position of the monitor changed or if soil 
moisture benchmarks were exceeded.  The system might also be programmed to check 
weather station data or compare data from multiple fields to reduce the likelihood of false 
positives.  If the system detected unexpected moisture, a field visit would confirm if there was a 
sensor malfunction or if the field was being watered. 
 
Remote soil moisture monitors save farmers significant time compared to driving from field to 
field to check soil (Watson and Scarborough 2010).  Although farmers may prefer to check soil 
moisture by hand and use the monitors only for verification or additional information (Morris 
2006).  The potential time savings could be enjoyed by monitoring agencies if monitors 

                                            
28 “Precision Irrigation,” accessed April 18, 2012, http://www.precisionirrigation.co.nz/ 
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reduced the need to visit every farm engaged in fallowing. 

3. Targeted Monitoring 
 Targeted monitoring has been proposed to alleviate the problem of moral hazard.  
Fraser (2004) developed a targeted monitoring model focused on conservation programs that 
provide payment for conservation with penalties for noncompliance.  In these programs the 
problem of moral hazard, i.e. farmers taking payments without conserving, cannot be 
eliminated with traditional partial monitoring schemes.  With targeted monitoring, a subset of 
participants is selected as the primary monitoring targets.  The choice of what subset to target 
first may be random or based on participant characteristics. 
 
Fraser examines three types of targeted monitoring: budget neutral, non-budget neutral, and 
adjusted budget neutral.  In the budget neutral approach, an agency monitors the targeted 
group more and compensates for the extra cost by monitoring the non-targeted group less.  In 
the non-budget neutral approach, an agency monitors the targeted group more while 
maintaining the same level of monitoring for the non-target group.  In the adjusted budget 
neutral approach, an agency monitors the targeted group more while adjusting the level of 
monitoring and penalties in the non-targeted group to eliminate moral hazard. The division into 
targeted and non-targeted groups can made based on geography or other farmer or farm 
characteristics.  If, for example, the program participants were divided equally into four groups, 
one group could be monitored during each monitoring period.  The targeted group would rotate 
each period except that those found cheating in previous periods would continue to be in the 
targeted group (Fraser 2004). 
 
Fraser rejects the budget neutral and non-budget neutral approaches because they do not stop 
everyone who was already cheating from doing so and they may induce cheating in the non-
target group.  He prefers the third approach because it has the potential to increase 
compliance in both the targeted and non-targeted group.  With the third approach, the targeted 
group is monitored more while the non-targeted group is monitored less to maintain budget 
neutrality.  To counteract the tendency for some in the non-targeted group to start cheating, the 
penalty for noncompliance was increased to the point that the risk of being caught cheating 
was too great for risk-averse participants to start cheating (Fraser 2004). 

4. Compliance Rewards 
 Yano and Blandford (2009) show that the use of compliance rewards can increase 
compliance rates in agricultural conservation programs.  A compliance reward is a payment 
made to a farmer if they are found to be complying with the terms of their conservation 
contract.  The use of a compliance reward may be justified because models show it can 
increase farmer compliance without increasing monitoring cost in some situations.  If it is 
assumed that the main goal of monitoring programs is to maximize contract compliance while 
minimizing monitoring cost, then compliance rewards could be useful.  The authors do not 
suggest that compliance rewards should replace other monitoring efforts; only that compliance 
may be increased using rewards without increasing costs to the monitoring agency. 
 
The authors first take a budget-neutral stance, assuming that monitoring agencies will not be 
able to increase their budgets in order to offer compliance rewards.  To remain budget neutral, 
compliance awards can be funded either by reducing the amount of monitoring or by reducing 
the number of farmers enrolled in a program.  If compliance rewards are funded by a reduction 
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in monitoring effort then compliance will increase in some, but not all, situations.  If monitoring 
effort is significantly reduced (inspection rate falls by more than 80%), some farmer s will be 
more likely to cheat despite the compliance reward. 
 
Yano and Blandford (2009) show that high compliance rates are achievable using compliance 
rewards funded by a reduction in enrolled farmers.  The problem with this approach however, 
is the potential of excluding the most effective farmers from the conservation program.  If the 
water transfer buyer can rank farmers based on their anticipated benefit to a conservation 
program, this problem might be avoided.  Although even if farmers can be ranked, the potential 
of not contracting with enough farmers to achieve targeted conservation is a problem with this 
funding method. 
 
The authors also look at the choice between more compliance monitoring and compliance 
rewards assuming an increased budget.  If more money is available, will compliance increase 
more if there is more monitoring or if there are more rewards?  They show that the preferred 
choice depends on the monitoring and enforcement costs per farmer.  For risk-neutral farmers, 
if monitoring costs are greater than the fine for noncompliance, compliance rewards work 
better than more monitoring.  For risk-averse farmers, compliance rewards are more likely to 
work better than more monitoring as risk aversion rises.   The authors point out that 
compliance rewards are preferred in cases where there is a limit on the noncompliance fine or 
monitoring costs are high or both. 

5. Other Innovations 
 Innovations in energy monitoring might also be used to monitoring water conservation.  
For example, where smart electricity meters are available and used to measure power use 
associated with water pumping and conveyance, water use could be monitored in real time 
using electricity-monitoring programs like Google s PowerMeter.  PowerMeter is a free tool that 
allows users to monitor electricity use online. 
 
Audio or video monitoring with remote online access might also be employed to monitor well 
pumps or fallowed fields.  Motion or sound activated recorders or cameras could be used.  In 
the Kentucky Green River Conservation Reserve Program automated recording systems were 
installed to monitor bird and frog calls (Grubbs 2008).  Sound recognition software was then 
used to automate the process of reviewing the sound files to catalog birdcalls.  An automated 
system may be devised to detect sounds of pumps running or irrigation water flowing. 

IV. Costs: Measuring, Monitoring, and Enforcing 
 In this section we provide cost estimates for the MME protocols described and 
descriptions of the specific tasks that need to be performed for effective application of these 
protocols.  The cost estimates are based on prior studies, cost data released by public 
agencies, and personal communication with program agencies. 

A. Balancing Costs and Accuracy 
 The first question that comes to mind in measuring, monitoring, or enforcing schemes 
might be—how accurate will they be?  Accuracy is probably the most important determinant to 
the cost of measuring, monitoring, and enforcing voluntary water transfers.  Very accurate 
measurements of applied water could be accomplished with, for example, variable rate 
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irrigation systems that send hourly readings to centralized computers via wireless Internet.  
However, with installation costs estimated at $138 per acre,29 this accuracy cannot be 
achieved without significant infrastructure investments. 
 
Some level of infrastructure costs can be justified by the benefits of increased accuracy: 
increased buyer confidence that they are getting what they paid for, improved confidence in the 
water transfer program, and increased transfer participation.  Federal funding may also be 
available to reduce the upfront cost of these kinds of investments, particularly from USDA 
programs such as EQIP.30  In the southeastern U.S., average on-farm costs of variable rate 
irrigation systems dropped over $100 dollars to around $34 per acre after federal cost-share 
assistance.31  However, the investment would only be worthwhile in areas where variable rate 
irrigation furthers other goals.  The cost would be difficult to justify for increased water 
measuring or monitoring accuracy alone. 

B. Estimating Costs of Measuring, Monitoring, and Enforcing 
 Limited data is available on the actual costs of measuring, monitoring, and enforcing 
water transfer programs.  We provide cost estimates where available.  Where cost estimates 
are not available we construct tables that could be used to summarize the major cost 
categories and aid in the comparison of different measuring, monitoring, and enforcing 
protocols. 

1. Traditional Measuring, Monitoring, and Enforcement Costs 
 A common method for measuring fallowing program conservation is based on crop 
records.  Programs managed by the California Department of Water Resources; Resource 
Management Division, Bureau of Reclamation, Mid-Pacific Region; Imperial Irrigation District; 
and Klamath Water and Power Authority use this method (CDWR and BOR 2009; IID 2010a; 
KWAPA 2010). 
 
Traditional participant monitoring and enforcement tends to rely on field visits by the 
contracting agency.  Imperial Irrigation District takes pictures of the locked headgates with 
fallow fields behind them (see Figure 2).  Aerial photography is also used.  Aerial photography 
is more expensive by IID estimates but is expected to take less staff time and have accuracy 
comparable to field visits.  The increased availability of free satellite imagery will likely make 
aerial monitoring less expensive than field visits. 

a) Water Transfers Office, California Department of Water Resources and 
Resource Management Division, Bureau of Reclamation, Mid-Pacific 
Region  

 The CDWR and BOR, collectively called the Project Agencies, accept water transfer 
proposals from individual farmers and water districts.  The Project Agencies require sellers to 
send in crop records, maps, and proof of water rights (CDWR and BOR 2009). 
 

                                            
29 “Introduction to Precision Agriculture,” Clemson Cooperative Extension, last accessed April 20, 2012, 
http://www.clemson.edu/extension/rowcrops/precision agriculture.html 
30 “Environmental Quality Incentives Program,” USDA, modified June 5, 2012, 
http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/eqip 
31 “Introduction to Precision Agriculture,” Clemson Cooperative Extension, last accessed April 20, 2012, 
http://www.clemson.edu/extension/rowcrops/precision agriculture.html 
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The water seller calculates baseline consumptive water use for each field based on 
established crop patterns and the Project Agencies  estimates the evapotranspiration of 
applied water (ETAW).  The amount of water considered transferrable is the difference 
between the baseline and current ETAW for each field and specific crop fallowed.  The water 
seller must reimburse the Project Agencies for the costs to review and approve proposed water 
transfers (CDWR and BOR 2009). 
 
The yearly costs for measuring in this case falls almost entirely on the water seller.  The water 
seller must provide all documentation, calculate baseline and current ETAW, and reimburse 
the Project Agencies for any costs incurred in verifying and approving the transfer.  The Project 
Agencies provide the ETAW values.  In 2009, the CDWR reported potential problems with 
current ETAW values.  First, the values may be outdated: new crop varieties and refined water 
use measures have been introduced since the crop consumptive use figures were developed.  
Second, water seeping from neighboring fields and weed growth may be allowing significant 
amounts of water to evaporate from fallowed fields.  So, the assumption that fallowed fields 
use no water is questioned (CDWR 2009). 
 
The major costs that the Project Agencies incur are associated with updating ETAW values.  
The CDWR outlines three action items to update ETAW: (1) holding a summit to discuss 
evapotranspiration of crops grown in the Sacramento Valley and to identify what is needed to 
monitor surface evaporation from idle fields; (2) developing a plan for ETAW research and 
establishing a timeline for updating ETAW; and (3) identifying cooperators and developing a 
financing plan for research and monitoring (CDWR 2009).  The categories of costs incurred by 
the Project Agencies and water sellers are summarized in Table 4. 
 

Table 4 Project Agencies and Water Seller Costs 

Measuring Costs 
Program Agencies' costs 
Updating ETAW: 
ETAW summit 
Planning and timeline 
Research and monitoring 
  
Participant s costs 
Review of: 
 crop records 
 maps 
 water rights 
Establish crop pattern 
Calculate baseline and current ETAW 

  
The Agencies  year-to-year measuring costs associated with this approach are probably low 
although the costs to update ETAW could be significant.  Lysimeter studies are the preferred 
method for finding or updating the crop coefficients used in ETAW calculations.  Lysimeters 
measure actual evapotranspiration from crops and are generally custom made to suit local 
conditions.  Lysimeter design variability makes their construction and installation costs difficult 
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to predict.  Table 5 lists the sizes and costs of some example lysimeters.  The prices are 
inflation adjusted to 2011 dollars.  Several of the studies reported costs for installing multiple 
lysimeters.  We report cost per lysimeter for comparability. 
 

Table 5 Lysimeter Construction and Installation Costs 

Source, Location Size (l x w x h) 
Cost/lysimeter 

($2011) 
I. Marek et al. 1988, Bushland, TX 3 x 3 x 2.3 m $125,013.41 
II. Schneider et al. 1993, Bushland, TX .75 x 1 x 2.3 m $6,350.20 
III. Jia et al. 2006, Citra, FL 1.52 x 1.52 x 1.37 m $25,852.91 
IV. Payer and Irmak 2008, West Central NE 1.52 x 1.52 x 2.13 m $14,872.80 
V. Event et al. 2009, Jordan Valley, Jordan 2.4 x 3 x 2.5 m $70,963.89 

 
The costs listed in Table 5 are for the design, fabrication, and installation of the lysimeters 
only.  The studies do not include operation or maintenance costs.  To find crop coefficients, 
only one crop can be studied at a time in each lysimeter and each crop must be cultivated for 
multiple seasons to obtain enough data. 
 
If the Project Agencies chose a satellite-based method (like METRIC) for updating their ET 
values, the costs might be lower assuming multiple crops could be studied simultaneously.  
METRIC was estimated to cost over four times less than traditional means (based on electricity 
usage) in an Idaho proof-of-concept model of irrigation wells (Morse et al. 2008).  METRIC s 
costs are discussed in more detail in the Innovative Measuring, Monitoring, and Enforcement 
Costs subsection, starting on page 39. 
 
Up-to-date crop coefficients and traditional ET estimations approaches can provide accurate 
estimates of water savings in conservation programs.  However, the accuracy of outdated crop 
coefficients, and ET estimates based on them, is uncertain.  If crop coefficients are outdated or 
nonexistent, remote sensing could offer a cost-effective way to estimate water savings 
accurately.  

b) Imperial Irrigation District fallowing program measuring 
 Imperial Irrigation District (IID) does not require farmers to send crop records with their 
fallowing program applications because it has water delivery records.  Farmers are paid for 
fallowing based on water deliveries to enrolled fields on an adjusted rolling average of eight of 
the last ten years.  The water yield from the program is also calculated based on reduced 
water deliveries.  IID calculates two water yields: at-farm and at-river.  The 2010-2011 
Fallowing Program had 9,330.6 acres enrolled.  The provisional at-farm water yield for the 
program was 50,266 acre-feet.  The provisional at-river water yield for the program was 54,708 
acre-feet (IID 2010b).  That implies a per-acre yield of 5.38 acre-feet at-farm and 5.86 acre-feet 
at-river.  The difference between the two yields is the combination of calculated seepage, 
evaporation, and other losses.32 
 
IID s measurement approach is expected to be less costly than a crop ET based approach, like 

                                            
 

32 David Bradshaw, IID Assistant Water Manager, Agricultural Water Management, email to Lana Jones, March 
15, 2011. 
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the one employed in the previous section, but it may be less accurate.  Farmer s in the 
program are paid based on past water use history and trends.  Water use history is based on 
the water delivered to the field, not the water consumed (ET).  Presumably not all of the water 
applied to the field is consumed.  Measurement based on historic deliveries could pay different 
rates for water conserved by fallowing different crops, depending on the ET of the crops and 
crop mix (double cropping of the same acres is common). 
 
To illustrate the difference between measurement based on water deliveries and water 
consumption, consider the following example summarized in Table 6.  In IID s program, alfalfa 
fallowing would pay farmers based on water history but limited to the 6 acre-foot program 
maximum (water application for alfalfa is estimated to average 8.5 acre-feet (Meister 2004a)).  
Cotton fallowing would pay farmers based on water history (estimated to average 5 acre-feet 
(Meister 2004b)).  The 2010-11 payment of $75 per acre-foot (IID 2010a) would pay $450 per 
fallowed alfalfa acre and $375 per fallowed cotton acre.  Alfalfa has higher estimated ET than 
cotton.  If the ratio of applied water to ET between the two crops were the same, then 
payments based on water deliveries would be the same as payments based on consumptive 
use.  Based on these per acre payments, IID is paying $134.33 per acre-foot for water 
conserved from alfalfa fallowing and $126.69 per acre-foot for water from cotton.  As a result of 
this approach, farmers may have an incentive to fallow alfalfa acres before cotton acres.  IID, 
however, would pay less for conserved water if farmers fallowed cotton.  Payment is only one 
of the factors farmers base fallowing decisions on though.  Additionally, if farmers pay more 
attention to payment per acre-foot of water applied instead of conserved, the incentive would 
work in the opposite direction. 
 

Table 6 ET vs. Applied Water Payments 
 ET1 Applied 

Water2 
Total Payment 

per acre3 
Effective Water Payment 

(payment/ET) 
Alfalfa 3.35 8.5 $4504 $134.33 
Cotton 2.96 5 $375 $126.69 
1 LCRAS 2009; 2 Meister 2004a, 2004b; 3 IID 2010a; 4 Based on 6 acre-foot maximum 

 
However farmers make their fallowing decisions, the difference in payments for conserved 
water versus applied water could add up with a program of this scope.  Consider the 2010-
2011 Fallowing Program s total acreage of 9,330.6 (IID 2010b).  If farmers offered only alfalfa 
acres in 2010-2011, IID would have paid $699,795 more than if farmers offered only cotton 
acres (9,330.6*(450-375)).  Alfalfa fallowing would yield more water than cotton fallowing but at 
a higher cost per acre-foot conserved.  The fairness of this approach and the potential for 
unintended consequences (concentrating fallowing in certain crop groups, changes in 
drainage) could be detrimental to the fallowing program, or regional economies and 
environments.  These potential negatives could be viewed as a cost of the measurement 
approach used.  IID s Fallowing Programs have been ongoing and successful for many years; 
updating their measurement procedure is probably not warranted.  However, new programs 
may wish to take these costs differences into account when deciding on how to measure 
conserved water or pay farmers. 

c) Imperial Irrigation District fallowing program monitoring 
 IID monitors fields participating in its fallowing program approximately four times per 
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year: twice from the ground and twice from the air (usually satellite).  IID staff drive to each 
field to take the ground photos.  Satellite photos are purchased.  Estimated annual monitoring 
costs incurred by IID are summarized in Table 7.  IID is also looking into photos available from 
the Bureau of Reclamation (BOR) that are free.  The free photos may have high enough 
resolution to monitor fallowed fields.33  Five percent of fields fallowed in IID s program are also 
verified by the BOR to satisfy QSA requirements.  The BOR drives out to the fields being 
verified with IID staff and takes additional photos.  These costs are not included in IID s 
monitoring cost estimates.  IID s estimated monitoring costs account for less than one percent 
of their overall program contracts expenses of $3,589,735 (IID 2010b). 
 

Table 7 IID Fallowing Program Monitoring Costs 

Ground photos   

Staff time: travel to fields; take, view, store photos   

Vehicle: fuel, maintenance & operation   

Camera: maintenance & operation, equipment   

Miscellaneous (computer hardware, storage, other)   

Total1 $2,000-3,000 

Satellite photos   

Staff time: download, view, store photos   

Photos: purchase   

Miscellaneous (broadband Internet access, hardware, storage)  

Total1 $4,000-6,000 

Annual Total (ground*2 + air*2) $12,000-18,000 

Per acre-foot water conserved (2010)2 $.22-.33 
1 Total estimates from David Bradshaw, IID, email Feb 2011; component categories are hypothetical 

2 2010-2011 Fallowing Program provisional at-river water yield of 54,708.2 af (IID 2010b) 

d) Bureau of Reclamation Klamath Project Water Bank 
 In the Government Accountability Office s 2005 report on the Bureau of Reclamation s 
operation of the Klamath Project Water Bank, three years of water bank expenditures are 
provided: 2002, 2003, and 2004.  These costs are summarized in Table 8.  Compliance 
monitoring costs are included in the “Other” category.  Water quality analysis and a contract 
with the Oregon Water Resources Department are also included in the “Other” category (GAO 
2005).  Total “Other” costs represent 0.5%, 0.47%, and 2.5% of total water bank costs in 2002, 
2003, and 2004. 
 
Over the three years examined in the GAO report, the BOR reported that it modified its 
monitoring process.  In 2003, the BOR monitored every water bank participant by visiting each 
field enrolled in fallowing at least once during the year.  The BOR also relied on a kind of 
neighborhood watch: irrigators reporting on program participants in breach of contract.  The 
2003 compliance rate was estimated at 95%.  In 2004, the BOR reduced monitoring efforts to 

                                            
33  David Bradshaw, IID Assistant Water Manager, Agricultural Water Management, email to Lana Jones, 
February, 2011. 
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reduce costs and only tested fields towards the end of the year.  They relied more on 
neighborhood watch.  No intentional violations were discovered in 2004 (GAO 2005).  The 
BOR attributed the large increase in costs in 2004 to increased water requirements and 
introduction of groundwater pumping contracts (GAO 2005). 
 

Table 8 BOR Water Bank Costs 2002-2004 

Costs (2011$) 2002 2003 2004 
Groundwater contracts 1,250,356 2,186,689 4,774,388 
Klamath Project fallowing contracts 0 3,301,700 758,836 
Off-project fallowing contracts 1,185,712 0 821,904 
Administration 3,100 214,221 303,791 
Other 12,772 27,155 172,408 
Total 2,451,940 5,729,766 6,831,327 

Source: GAO 2005 (dollar amounts inflation adjusted 2011$) 

2. Innovative Measuring, Monitoring, and Enforcement Costs 
 Innovative measuring, monitoring, and enforcement methods may require significant 
upfront investments but are expected to be more accurate and less costly in the long run 
compared to traditional methods.  Satellite technology would not require an upfront equipment 
investment but would require staff time to choose appropriate satellite based models, 
implement the models, and interpret their results. 

a) Remote sensing 
 The Bureau of Reclamation uses satellite imagery to estimate total evapotranspiration 
(ET) in the Lower Colorado River Basin.  Their models combine imagery taken from Landsat or 
SPOT satellites with a GIS database.  Using spectral analysis, they identify the different types 
of ground cover in the basin.  They use established ET crop coefficients for the ground cover 
types to calculate ET for the basin.  Landsat images are available for free online from USGS.34  
SPOT images cost up to $10,000 per scene.35 
 
Research is progressing on the use of satellite remote-sensing technology to estimate daily ET 
(Allen et al. 2007a and 2007b; French et al. 2010; Hunsaker et al. 2007).  This research can be 
applied to create accurate estimates of actual consumptive water use history for individual 
fields, water districts, or basins.  The cost to implement remote-sensing ET models could be 
substantial, however the results may be more accurate because the models make no 
assumptions about crop or field conditions.  Proprietary options also exist.36  Bastiaanssen et 
al. (2005), compared satellite-based ET to traditional methods: “Spatial coverage is available at 
the variety of scales needed: field, project, and basin. Temporal coverage is vastly superior at 
minimal cost to provide similar detail when compared to the field measurement of data.” 
 
Courault et al. (2005) compare the advantages and disadvantages of several remote sensing 
ET estimation methods.  They break the methods into five major categories: simplified, 
inference models, graphic, determinist, and 3D models.  Of these, Courault et al. (2005) note 

                                            
34 http://glovis.usgs.gov/, http://earthexplorer.usgs.gov/ 
35 Michael G. Baker, Remote Sensing and GIS Specialist, USDI Bureau of Reclamation, email to Lana Jones, 
February 2011. 
36 SEBAL North America, Inc. for example 
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the graphic method for being, “Operational, [and] low cost” compared to the other methods.  
Graphic and inference methods (i.e., vegetation index) are actively researched in the U.S. and 
have been the focus of remote sensing ET methods examined in this paper.  One graphic 
method is the Surface Energy Balance Algorithm for Land (SEBAL).  Bastiaanssen et al. 
(2005) describe SEBAL as, “a direct method to estimate ET without a priori knowledge on soil, 
crop, and management conditions… [It] is now an operational instrument for targeting, 
monitoring, and evaluating irrigation and drainage systems.” 
 
The Idaho Department of Water Resources (IDWR) compared the costs of measuring 
groundwater well usage using a power consumption method to the University of Idaho s 
graphic, satellite based METRIC method (Morse et al. 2008).  The IDWR found the cost to 
measure all southern Idaho wells using METRIC was estimated at $154,450 or $25.97 per well 
(Morse et al. 2008).  The main determinant of the cost was the number of Landsat images 
needed.  The measuring location and time frame determine how many images are needed.  
For a single date, five Landsat images cover most of southern Idaho.  Twelve dates were 
acquired, leading to a total of 60 images.  Total processing costs on a per image basis were 
$2,574.  Initial model programming and implementation costs are not included in this figure. 
These ramp-up costs could be significant (Morse et al. 2008).   
 
The costs to use energy balance models like METRIC or SEBAL will depend on whether the 
user chooses to purchase commercial ET maps or implement a model in house.  Morse et al. 
(2008) indicate that using METRIC “is a complex task, and good results will require 
considerable expertise, training, and experience.”  Vegetation index (VI) methods are less 
complex and may lower implementation costs compared to SEB methods. 

b) Remote soil moisture monitoring 
 A 2006 ATTRA (National Sustainable Agriculture Information Service)37 study compared 
a range of soil moisture monitoring methods and included price estimates for each.  The 
methods for measuring soil moisture vary in their cost and accuracy but the basic requirement 
of a monitoring program would be to detect the presence or absence of irrigation.  In this case, 
a sensor that gives very accurate soil moisture levels would be unnecessary.  Granular matrix 
sensors cost from $25 to $35 dollars and last from three to seven years (Morris 2006).  These 
sensors must be connected to a data logger to retrieve soil moisture data.  Data loggers cost 
from $60 to $500 not including the sensors and cables to connect sensors to the logger.  Data 
loggers must still be visited periodically to collect the soil moisture data that has been logged.  
Remote sensing systems, like those used in variable rate irrigation systems, send soil moisture 
from buried sensors wirelessly to a central location computer.  These systems start at $1000.   
The systems are expensive but they allow farmers to monitor soil moisture across multiple 
fields with one computer (Morris 2006). 
 
A remote soil moisture sensing system would require an initial equipment investment plus time 
to install the system on all participating farms.  However, because these systems could also 
benefit farmers in years when they are not participating in a fallowing program, cost-sharing 
arrangements could be explored.  Morris (2006) quoted farmers who had instituted soil 
moisture monitoring on their land in a 2000-2004 National Center for Appropriate Technology 

                                            
37 “ATTRA homepage”, NCAT, last accessed June 6, 2012, https://attra.ncat.org/ 
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(NCAT) project, saying that the monitors supported their irrigation decisions and that many 
saved water.  One irrigator was able to delay watering two to three days after a late snowstorm 
and saved about $100 in electricity as a result.  Figure 9 shows an example graphical output 
from a soil moisture data logger. 
 

 
Figure 9 Soil Moisture Data Logger Display 

(Morris 2006) 
 
With this type of system, monitoring programs could achieve close to 100% compliance on 
fallowing contracts with minimal recurring costs.  Some technological glitches and breakage 
would be expected, although they would likely cost less per year than the $15,000 IID 
monitoring bill.  Enforcement would also be simplified with such a system because of the clear 
evidence the soil moisture monitor would provide.  Precipitation would be identified by the 
height and slope of moisture readings.  While these systems would not significantly increase 
compliance in a program that already had high compliance, it would provide evidence to water 
buyers that they are getting the water they paid for.   
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3. Comparing Costs 
 
Table 9 groups common and innovative measuring, monitoring, and enforcement methods and 
summarizes their expected accuracy and costs to facilitate comparison among the methods.  
Recommendations based on the accuracy and costs of these methods are discussed in the 
next section. 
 

Table 9 Cost Comparison Traditional & Innovative MME 

Method Accuracy Upfront Cost Ongoing Cost 
Measuring 

Water delivery 
based 

Will pay different water prices depending on 
the crops fallowed; accuracy of actual water 
savings will depend on strength of formulas 
used to convert applied water into consumed 
water 

low low 

Traditional ET Accurate when up to date but loses accuracy 
over time as crops and farming practices 
change 

$6350-
125,000 per 
installation1 

+ O&M 

depends on 
frequency of 

updates 

Remote 
sensing ET 

Accuracy comparable to traditional ET 
methods; once models are established,  
frequent updating of ET values to maintain 
accuracy possible  

$30,890 per 
location + 

costs to set 
up model2 

depends on 
frequency of 

updates 

Monitoring & Enforcement 
Irrigator 

“neighborhood 
watch” 

Method lacks verifiability; accuracy varies 
depending upon, among other 
considerations, relationships among program 
participants and water contracting agency 

minimal minimal 

Site visits Assuming site visits are unannounced and 
appropriately scheduled during the growing 
season, high accuracy possible 

minimal $4,000-
6,0003 

Satellite 
based 

Assuming temporal and spatial scale 
available with minimal cloud cover, high 
accuracy possible 

minimal $8,000-
12,0003 

Remote soil 
moisture 
meters 

Highly accurate method compared to other 
options; soil moisture data may have 
additional farmer and verification benefits; 
cost sharing with farmers or government 
agencies possible4 

$1,000+ per 
installation5  

low 

1 See Table 5; 2 Morse et al. 2008; 3 Ongoing costs on low end of range with free satellite imagery 
(David Bradshaw, pers. com. 2011); 4 http://www.clemson.edu/extension/rowcrops/precision 

agriculture.html; 5 Morris 2006 

V. Recommendations for Effective Measuring, Monitoring, and Enforcing 
 In designing any irrigation fallowing program, it is essential to clearly articulate the 
overall goal of the program.  Generally this will be to secure water at a reasonable price in 
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order to transfer water to another use, whether it be environmental, in-stream, municipal, or 
another consumptive use.  Other goals of a program could include securing water in a fair way 
with minimal disruption to local economies; and instilling confidence in water buyers while 
maintaining the goodwill of water sellers. 
 
The task of ensuring that the water being purchased is actually conserved can be broken down 
into two main components: measuring conserved water, and monitoring and enforcing 
contracts.  Defining and measuring conserved water is the more technically difficult part of the 
process. The expenses a program incurs in measuring conserved water will depend on the 
nature of the program, and perhaps, what the water will be used for.  The final decision will be 
a balancing of costs and benefits.  What are the benefits of having a very accurate measure of 
conserved water and what are the costs of that measurement?  With new remote-sensing 
based methods of measuring ET, it may be possible to get accurate measurements at a lower 
cost than what was the norm in the past.   
 
Acquisition programs need the goodwill of the irrigation community, including growers and 
district managers. Definitions of conserved water and MME protocols need to be developed 
with this goodwill component in mind.  It is possible that a mutually agreed upon definition and 
set of MME protocols may represent a compromise between irrigation community acceptance 
and cutting edge technical understanding.  Remote-soil moisture sensors, for example, would 
require significant involvement from irrigators to implement.  The farming community may be 
willing to participate though, if the technology has been proven effective at both lowering costs 
and raising yields.  Many of the innovative technologies discussed here have benefits to offer 
farmers, which should be emphasized when planning MME strategies.  From a program point 
of view remotely sensed ET can provide accurate, reasonable-cost estimates of water savings.  
From a farmer point of view, it can provide real-time access to crop-water interactions and 
contribute to better irrigation scheduling. 
 
Monitoring and enforcing contracts, while not necessarily technically difficult, can account for a 
significant portion of program costs.  As with measuring though, innovative methods have 
emerged that could increase accuracy (and program compliance), while also decreasing costs 
compared to traditional methods.   
 
In this section we suggest guidelines and make recommendations for developing and 
implementing effective measuring, monitoring, and enforcement of irrigation fallowing 
programs. 

A. Measuring—Recommendations and Guidelines 
 Many of the technologies covered in this report can be used for either measuring 
reduced consumptive water use or monitoring compliance with fallowing program 
requirements.  However, care should be taken to match the technology to its appropriate use.  
Monitoring fallowed fields using free Landsat images would require minimum staff training or 
time.  Measuring the ET of fields before and after fallowing with remote sensing based models 
would require significantly greater investment.  We explore three basic methods to measure 
water savings in this report: water delivery based, traditional ET, and satellite-assisted ET.  
The water delivery method is cost effective but is expected to be the least accurate of the 
methods.  The traditional ET method is accurate and cost effective if up-to-date.  However, if 
the ET crop coefficients used to calculate water savings are out-of-date, this method may be 
no more accurate than estimating water savings based on water deliveries.  The optimal 
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approach for measuring conserved water in a fallowing program depends on the crops, region, 
and availability of relevant ET crop coefficients.  If crop types and practices have not changed 
significantly since crop coefficients were developed in a region, then we endorse their 
continued use.  If, however, crop coefficients are outdated, we would recommend that 
fallowing programs consider updating ET values based on emerging satellite-assisted 
estimators.  These estimators may be both more accurate and less costly than traditional ET 
estimators. 
 
Tradeoffs between measurement costs and accuracy were discussed earlier in this report. The 
appropriate balance will differ across regions and time periods.  Where water supplies have 
high economic and ecological value and there is intense competition for water, higher 

investments in accurate measurement may well be warranted.  Figure 10 summarizes the 
questions program designers may ask when creating or updating a fallowing measurement 
scheme. 
 

 
 

B. Monitoring and Enforcing—Recommendations and Guidelines 
 The monitoring and enforcement methods discussed in this report can be summarized 
in four basic categories: “neighborhood watch”, site visits, satellite based, and remote soil-
moisture based.  Of these, the “neighborhood watch” method of relying on neighboring 
irrigators to report contract breaches is the most cost effective but can be ruled out as a 
primary monitoring method in most cases because it does not provide hard evidence of 
compliance.  Site visits are not as cost effective, but can be constructed to provide accurate 
records of fallowing compliance, particularly if photos are taken.  Satellite-based monitoring is 
less cost effective if the images must be purchased.  However, the availability of free images 
makes this option more attractive.  If fields are large enough to discern on free Landsat 
images, remote sensing images are recommended for monitoring.  As long as fields are 
monitored far enough into the growing season for the difference between weeds and crops to 
be apparent, this approach would be cost effective, require minimum staff time, and provide a 

Fallowing Program Design—Measurement Questions 
 

 Are region and crop specific ET coefficients available? 
 How old are the ET crop coefficients? 
 Have crop varieties or cropping practices changed since the 

coefficients were developed? 
 Is there an estimate for ET on fallowed fields? 
 What is the availability of remote-sensing data in the region? 
 What is the cost of remote-sensing ET estimation and how does it 

compare to traditional ET estimation methods? 
 What is the economic value per unit of water in the area, as indicated 

by market prices or other indicators? 
 Are more accurate, and potentially costly, measurement approaches 

justified by high economic and ecological values associated with 
conserved water? 

Figure 10 Measuring Design Questions 
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history of fallowing compliance given that images are archived. 
 
Monitoring and enforcement based on remote soil-moisture monitoring is the most expensive 
choice but it may be viable in some situations.  Soil-moisture monitoring can improve on-farm 
water management and crop yield in addition to providing water savings for fallowing 
programs.  These benefits plus the possibility of government or non-profit agency cost sharing 
could make this option feasible.  Farmers may also be willing to invest in soil-moisture sensors 
that can save them time and money in the long run.  If fallowing program agencies coordinate 
cost sharing agreements among farmers and federal agricultural programs, they may be able 
to procure a very accurate monitoring and enforcement tool at a reasonable cost.  
 
A final recommendation in monitoring and enforcing fallowing programs is the option of 
targeted monitoring and compliance rewards.  Both of these methods can increase compliance 
while keeping monitoring and enforcement costs stable.  Targeted monitoring may be 
combined with any of the other methods.  For example, if site visits were the main monitoring 
method, the fallowing program agency could divide participants into equal groups and alternate 
visits on a random schedule.  Remote soil moisture monitors could also be randomly placed in 
select fields and rotated.  Figure 11 summarizes the key questions program designers may ask 
when creating or updating a monitoring and enforcement scheme. 
 

 

VI. Conclusions 
 Water acquisition programs that rely upon cropland fallowing should consider in which 
specific arenas of MME the greatest gains can be made to more cost effectively achieve 
program goals. It is likely that an assessment across measuring, monitoring, and enforcing 

Figure 11 Monitoring and Enforcement Design Questions 

Fallowing Program Design—Monitoring & Enforcement Questions
 

 Is free Landsat imagery suitable to monitor fallowing? Sources: 
http://glovis.usgs.gov/ or http://earthexplorer.usgs.gov/ 

 Are fields large enough to be monitored by Landsat (roughly a 
hectare or more depending on shape)? 

 Do regional water agencies purchase or use satellite imagery?  Is it 
suitable to monitor fallowing?  Is resource sharing possible? 

 What is the cost of remote soil-moisture monitoring installation? 
 Is government or non-profit funding available to support installation of 

remote soil-moisture monitoring systems? 
 Are local irrigators interested in sharing in cost of remote soil-

moisture monitoring systems? 
 Can budget-neutral monitoring methods like targeted monitoring or 

compliance rewards support fallowing monitoring? 



 46 

methods will provide ideas for overall cost savings and improvements in the amount of water 
acquired per unit cost.  A mixture of MME strategies could provide increased program 
compliance while still remaining cost effective.  A mixture of monitoring methods, for instance, 
might be advantageous in discouraging non-compliance, as program participants inclined 
toward non-compliance would have a harder time remaining undetected with multiple methods.  
A mixed approach could entail switching monitoring methods from year to year.  Remote 
monitoring could be used every year with on-the-ground verification through field visits on a 
random schedule. 
 
Emerging technology may enhance fallowing program measuring, monitoring, and enforcing 
accuracy while maintaining cost-efficiency.  Satellite-based technology, in particular, is 
becoming available at the temporal and spatial scales necessary to be useful in fallowing 
programs. Furthermore, high-resolution imagery may be freely available.  Moreover, greater 
numbers of water sector professionals are receiving training in working with remotely sensed 
imagery. Adoption of satellite-based monitoring could be the first step.  If it proves worthwhile, 
satellite-based measuring, or ET estimation, might be explored.  With better measuring, 
monitoring, and enforcement comes greater confidence in water conservation and transfer 
programs.  Greater confidence can lead to more buyers and sellers entering the temporary 
water transfer market.  As temporary water transfer agreements become more commonplace, 
the mechanisms for negotiating, approving, implementing and monitoring them become more 
refined and costs per unit of water acquired can decrease for everyone involved.  Like the flow 
of water through timeworn channels, an efficient and mature transfer process can smooth the 
way for everyone involved.  
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VII. Appendix: Remote Sensing Techniques 
An overview as applied to measuring and monitoring water use 

 
keywords: remote sensing, evapotranspiration, vegetation index, VI, surface energy balance, 
SEB, water transfers  
 
 Images of Earth taken from outer space are revealing the planet s forms and fluxes.  
These remotely sensed images are giving researchers the ability to study planetary processes 
in near real time.  Evapotranspiration has been a focus of remote sensing study because of its 
importance to the water balance and the difficulties measuring it using strictly ground-based 
methods.  Researchers (Elhaddad et al. 2011, Glenn et al. 2011, for example) are refining 
techniques to analyze the consumption and movement of water using remote images.  This 
guide provides a basic background on remote sensing and how it can be used to measure and 
monitor water use or evapotranspiration. 
 
Remote sensing is gathering information from a distance.  Energy reflected or emitted from the 
Earth is recorded and then processed, analyzed, and applied (White 1977).  The information 
may be gathered from any distance.  Remote sensing satellites gather information from low 
Earth orbit altitudes of up to 2000 km; cranes or airplanes enable remote sensing much closer 
to the ground.  The primary remote-sensing inputs to estimate evapotranspiration as explored 
here are visible, infrared, or thermal images gathered from Earth observation satellites.  The 
frequent collection and low cost of satellite images contribute to their popularity.  However, the 
transformation of images into evapotranspiration estimates can be a lengthy process. 
 
The ability to estimate evapotranspiration from satellite imagery depends on the purpose of the 
satellite and its imaging characteristics.  The spatial, spectral, radiometric, and temporal 
resolution of images determine what applications they are best suited for.  Spatial resolution in 
the digital realm refers to the actual area represented by each pixel in an image.38  A 20-meter 
resolution will capture a 20 by 20 m surface square in each image pixel.  Resolution affects the 
size of features that can be discerned in an image.  For an area with fields smaller than 20 
square meters, an image with a 20 m resolution may not be sufficient to accurately estimate 
ET.  NASA s Landsat 7 has a spatial resolution of 15 to 60 m (depending on the sensor).39  
The Moderate Resolution Imaging Spectroradiometer (MODIS) satellite has a spatial resolution 
of 250 m to 1 km.40 
 
Spectral resolution41 refers to the range of electromagnetic wavelengths that a sensor 
captures.  Multi-spectral sensors record multiple separate wavelength ranges.  For example, 
the Landsat 7 satellite s Enhanced Thematic Mapper Plus instrument has eight spectral bands 
ranging from 0.45 to 12.5 micrometers (μm).  The spectral resolution of Landsat 7 includes 
visible and near infrared, short and long wave infrared (thermal), and panchromatic bands.42  

                                            
38 “Landsat 7 Science Data Users Handbook 6.2 Spatial Characteristics,” last modified March 11, 2011, 
http://landsathandbook.gsfc.nasa.gov/data_properties/prog_sect6_2.html 
39 “The Enhanced Thematic Mapper Plus,” last modified January 11, 2012, 
http://landsat.gsfc.nasa.gov/about/etm+.html 
40 “Specifications,” accessed February 6, 2012, http://modis.gsfc.nasa.gov/about/specifications.php 
41 Highlighted terms are defined in the Glossary, starting on page 59. 
42 “The Enhanced Thematic Mapper Plus,” http://landsat.gsfc.nasa.gov/about/etm+.html 
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MODIS has 36 spectral bands ranging from 0.4 to 14.4 μm.43   
 
Radiometric resolution refers to the sensors ability to distinguish between small brightness 
differences in a given spectrum.  Radiometric resolution is measured in bits and tells the 
maximum range of values in the image.  8-bit sensors record 256 values (28=256).  An image 
can be recorded as a series of values, with a corresponding value for each pixel.  The image 
on the left in Figure 12 has 2-bit resolution compared to 8-bit resolution in the image on the 
right.  The 2-bit figure has only 4 (22) values: black, white, and two shades of grey (compared 
to the 8-bit image s 256 shades).  Landsat 7 has 8-bit resolution.44  MODIS has 12-bit. 
 

 
Figure 12 Radiometric Resolution: 2-bit vs. 8-bit45 

 
For each instrument, choices must be made between spatial, spectral, and radiometric 
resolutions.  Higher spatial resolution is attained through a smaller field of view, which limits 
the amount of energy reaching the instrument.  Less energy means lower quality images.  
Decreasing spectral or radiometric resolution will increase the energy reaching the instrument 
and compensate for increased spatial resolution (Campbell 2002).  Both need not be sacrificed 
though.  Radiometric resolution can be maintained concurrent with high spatial resolution by 
widening the wavelength range of the sensor (decreasing spectral resolution).   
 
Spectrum can also limit spatial resolution.  For example, thermal radiation is longer wavelength 
and lower energy than visible radiation.  To collect sufficient energy thermal sensors need to 
use a larger field of view, which limits spatial resolution.  Thus thermal infrared images are 
generally lower resolution than what is possible in visible or near infrared images.46  Figure 13 

                                            
43 “Specifications,” http://modis.gsfc.nasa.gov/about/specifications.php 
44 “Landsat 7 Science Data Users Handbook 6.4,” last modified March 11, 2011, 
http://landsathandbook.gsfc.nasa.gov/data_properties/prog_sect6_4.html 
45 “Radiometric Resolution,” last modified January 29, 2008, http://www.nrcan.gc.ca/earth-sciences/geography-
boundary/remote-sensing/fundamentals/2097 
46 “Thermal Imaging,” last modified January 29, 2008, http://www.nrcan.gc.ca/earth-sciences/geography-



 49 

and Figure 14 show approximately the same region in the Yuma, AZ area.  The Landsat 5 
satellite took both the images on October 26, 2011.  The images highlight Landsat s spatial 
resolutions at thermal versus visible spectrums.  The thermal image has a resolution of 120 m 
compared to the visual image resolution of 30 m.  The thermal image would have limited use 
for estimating ET of the smaller fields discernible in the upper right in the visible image.  
However, Landsat s thermal resolution currently is the best available for remote sensing ET 
estimation and is sufficient for many agricultural applications. 
  

                                                                                                                                                       
boundary/remote-sensing/fundamentals/1527 



 50 

 
Figure 13 Landsat 5 Thermal Infrared Image, October 26, 2011, Yuma, AZ 

120 m resolution, path 38, row 3747 

 
Figure 14 Landsat 5 Visible Image, October 26, 2011, Yuma AZ 

30 m resolution, path 38, row 3748 
 
 
The final type of resolution affecting the usability of satellite imagery is temporal resolution.  
Temporal resolution refers to the time between passes over the same area by the same 
satellite.  Landsat 7 has a temporal resolution of 16 days; MODIS has a temporal resolution of 
1 to 2 days. 
 
Landsat and MODIS products are well suited to estimating ET because of the balance of their 
resolutions (plus the images are easy to acquire and free).  Landsat 7 offers high spatial 

                                            
47 “USGS Global Visualization Viewer,” accessed February 10, 2012, http://glovis.usgs.gov/ 
48 Ibid. 
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resolution, good spectral resolution, and fair temporal resolution.  MODIS offers moderate 
spatial resolution, high spectral resolution, and high temporal resolution.  Their relative 
strengths and weaknesses make each suited to different ET situations.  Landsat s high spatial 
resolution makes it ideal for estimating ET at the farm field scale.  However, its temporal 
resolution makes estimating ET between images complicated.  MODIS  high temporal 
resolution makes it attractive for daily irrigation scheduling but its spatial resolution makes it 
impractical for medium or smaller fields.  MODIS is well suited to larger scale ET estimation, 
like seasonal basin or catchment-wide ET. 

A. Traditional Evapotranspiration Methods 
 Remote sensing of evapotranspiration (ET) is built upon traditional ET estimation 
methods.  In order to show how remote sensing estimations of ET compare to traditional ET 
estimates, a brief overview of traditional ET estimation is presented here. 
 
ET is a combined measure of the water vaporized by soil surface evaporation and plant 
transpiration (Allen et al. 1998).  ET may be measured directly by probe or lysimeter.  
Lysimeters are the preferred method to measure crop ET but the costs to make, install, and 
operate them are prohibitive in most cases.  So methods have evolved to estimate potential ET 
based on current meteorological conditions and some simplifying assumptions.  Potential ET is 
a concept that was developed in the mid twentieth century to simplify ET estimation.  Instead of 
estimating the entire ET equation for every type of crop, the calculation was split into two 
pieces: potential ET and crop coefficient.  Potential ET is the amount of water transpired at the 
given climatic conditions by a short, uniform green crop that has plenty of water and is 
completely shading the ground (Penman 1956).  Once potential ET is estimated, it is adjusted 
with a crop coefficient to estimate ET for a specific crop.  Potential ET was later replaced with 
the more precise reference ET (ET0), which specifically defines the reference crop as a large 
area of actively growing green grass 12 cm tall (Allen et al. 1998).  Many methods for 
calculating reference ET have been developed that offer a range of complexities and 
accuracies.  For example, the Blaney-Criddle method requires only one input, air temperature, 
to provide a rough estimate of monthly reference ET.49  Compare this to the currently 
recommended Penman-Monteith method that estimates daily reference ET using four weather 
inputs: solar radiation, air temperature, humidity, and wind speed. 
 
In the Blaney-Criddle, Penman-Monteith, and other similar methods the steps to estimate crop 
ET are roughly the same.  Consider a farmer estimating last week s ET for a field of wheat 
using the traditional FAO Penman-Monteith method (see Allen et al. 1998 for a full description).  
She would calculate reference ET (ET0: standardized potential ET) and multiply it by the crop 
coefficient (Kc) for her wheat.  Using reference ET simplifies the computation of ET by 
removing crop specifics from the initial estimation.  Reference ET is what ET would have been 
for a standardized grass crop given the previous week s meteorological conditions.  The 
standardized grass crop is a freely transpiring, disease and weed free crop, with no stress from 
limited soil moisture (Allen et al. 1998). 
 
The FAO Penman-Monteith method using reference ET is practical.  Four weather inputs are 
needed: solar radiation, air temperature, humidity, and wind speed.  In states with weather 
                                            
49 “Chapter 3: Crop Water Needs,” FAO, last accessed May 4, 2012, 
http://www.fao.org/docrep/s2022e/s2022e07.htm#3.1 
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station networks, like California (CIMIS)50 and Arizona (AZMET),51 the weather inputs (and 
calculated reference ET in these cases) are available without any additional investment on the 
farmer s part.  All the farmer has to do to estimate ET is retrieve reference ET from a website 
and multiply it by her specific crop coefficient.  A downside of this method is the local nature of 
the measurements.  Actual ET can vary even over small distances, especially where topology 
or soil characteristics are varied (Tang et al. 2009). 
 
In addition to spatial variations, there is uncertainty inherent in the calculation of reference ET.  
Weather station quality and location affect reference ET.  The ASCE-EWRI (2005) recommend 
using data from weather stations that are surrounded for 100 m in all directions by “nearly level 
expanses of uniform vegetation that are supplied with sufficient water through precipitation 
and/or irrigation to support ET near maximum levels.”  Weather station siting is important 
because the assumptions built into the reference ET equation are based on a uniform grass 
crop.  Reference ET calculated from weather stations in fields that fail to meet ASCE-EWRI 
recommendations could be inaccurate depending on local conditions.  Adjusting or estimating 
weather data may be necessary. 
 
The reference ET equation is also a matter of choice.  Different versions of the Penman-
Monteith equation have been proposed, tested, and recommended.  Some perform better than 
others depending on local conditions.  Ventura et al. (1999) compared the precision of five 
Penman-Monteith equations to lysimeter-measured ET in California and Italy.  The hourly 
lysimeter values for ET ranged from about 30 to 600 W m-2.  The root mean-square error 
(RMSE) of the Penman-Monteith computed reference ET values compared to measured ET 
was between 23 and 47 W m-2.  The larger errors tended to occur when the ET values were 
highest.  The authors note that when measuring ET, RMSE of less than 50 W m-2 is 
considered good. 
 
Only one method is recommended for worldwide application: the FAO Penman-Monteith (Allen 
et al. 1998).  In the US, a slightly modified version of the Penman-Monteith, the ASCE 
Standardized Reference Evaporation Equation, is recommended (ASCE-EWRI 2005).  The 
methods are virtually identical.  The ASCE method also allows for computation based on a 
standardized alfalfa crop that is used with alfalfa based crop coefficients. 
 
The second part, the crop coefficient, makes this method easy to use but also brings in more 
ambiguity.  The crop coefficient adjusts reference ET based on crop type and growth stage.  
To estimate actual crop ET, reference ET is multiplied by a crop coefficient.  Crop coefficients 
are developed for crops grown in optimal conditions so they are only approximations of actual 
ET.  Actual wheat ET will vary from its associated crop coefficient for reasons like plant variety 
differences, management choices, and soil salinity (Glenn et al. 2011).  According to Glenn et 
al. (2011) these variations often lead to lower than expected water demand.  For example, 
disease or limited soil moisture will lower ET.  Using crop coefficients to schedule irrigation 
could lead to over-watering in these cases.  They could also lead to under-watering in cases 
where, for example, a new crop variety has higher yields and ET. 
 

                                            
50 “CIMIS Overview,” accessed February 8, 2012, http://wwwcimis.water.ca.gov/cimis/infoGenCimisOverview.jsp 
51 “About AZMET,” accessed February 8, 2012, http://ag.arizona.edu/azmet/az-about.htm 
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Figure 15 and Figure 16 show crop coefficients developed for two varieties of durum wheat 
grown in southwestern Arizona by Ottman (2004) and Sanchez and Brown (2009).  Ottman 
used neuron probes to develop coefficients for durum wheat (Kofa variety).  Sanchez and 
Brown used lysimeters to develop coefficients for durum wheat (Havasu variety).  The methods 
used to determine the coefficients most certainly contribute to the differences of the studies  
findings.  Lysimeter are the preferred method for developing crop coefficients.  The initial crop 
coefficients are not comparable because of differences in data reporting, however, Sanchez 
and Brown attribute the high initial value in their study to the irrigation required to initiate the 
crop.  The 20-day coefficient in the Ottman study of Kofa wheat is 40 percent higher than the 
Sanchez and Brown study of Havasu wheat.  However, the Havasu wheat crop coefficient 
peaks about 10 percent higher than Kofa.  These two studies highlight the differences between 
similar crops grown in similar areas.  ET estimation will be less certain when using crop 
coefficients that were not locally or recently developed for relevant crop varieties.    
 

 
Figure 15 Crop Coefficients, Durum Wheat (Kofa variety) planted Feb. 13, 2004, Yuma, AZ  

(Adapted from Ottman 2004) 
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Figure 16 Crop Coefficients, Durum Wheat (Havasu variety) planted Feb. 3, 2009, southwestern 

AZ 
(Sanchez and Brown 2009) 

 
An additional problem with the use of crop coefficients is their availability.  In his 2004 paper, 
Ottman said that Arizona crop coefficients were nonexistent.  The alternatives at the time were 
coefficients from California or estimates based on outdated work done in Phoenix.  Sanchez 
and Brown made the point again in 2009:  “Appropriate crop coefficients for calculating ET 
from weather based ETo estimates for irrigation scheduling are lacking.”  Besides lacking crop 
coefficients, the on the ground accuracy of the FAO Penman-Monteith/crop coefficient method 
has been repeated as a key motivation in developing ET methods based on or assisted by 
remote sensing (Tang et al. 2009, Glenn et al. 2011, Hunsaker et al. 2007).  The costs and 
benefits of remotely sensed ET are explored in the next section. 

B. Estimating Evapotranspiration Using Remote Sensing 
 Evapotranspiration (ET) models that rely on remote sensing fall into two main 
categories: surface energy balance or vegetation index.  Both methods have been used to 
estimate ET in irrigated agriculture.  Each has its strengths and weaknesses, which will be 
discussed after a general description of the methods.  Local conditions and expertise can limit 
the appropriateness of either model.  Remote sensing ET models are generally not completely 
reliant on remotely acquired data.  Many still use ground data as inputs and for calibration. 

1. Surface Energy Balance 
 Surface energy balance (SEB) methods estimate ET using thermal satellite imagery.  
Thermal images from Landsat are available free of charge.52  ASTER (Advanced Spaceborne 
Thermal Emission and Reflection Radiometer) also takes thermal images, however they are 
not freely available to the public.  SEB methods are based on the principle that the energy 
leaving a field surface has to equal the energy arriving there for a given time period.  ET can 

                                            
52 “USGS Global Visualization Viewer,” accessed February 10, 2012, http://glovis.usgs.gov/ 
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be estimated based on a surface energy balance because as water evaporates and transpires, 
it uses energy.  The energy consumed by ET is calculated as the latent energy after sensible 
heat flux and soil heat flux are subtracted from net radiation (Allen et al. 2007a).  In practice, 
evaporative fraction is often reported in place of latent heat flux.  Evaporative fraction is the 
ratio of latent heat to latent plus sensible heat (Shuttleworth et al. 1989).  Evaporative fraction 
can then be converted into ET. 
 
Researchers have developed many SEB models.  They mainly differ in how they estimate 
sensible heat flux (Elhaddad et al. 2011).  Some models estimate the energy balance of soil 
and vegetation separately.  Others use contrasting wet and dry points in an image to define the 
thermal characteristics for extreme ET values.  One commonality of the models is their reliance 
on data from at least one weather station within the satellite image (Elhaddad et al. 2011).  
 
Researchers in the western U.S. have been working to tailor SEB models such as METRIC 
(Allen et al. 2007a), REEM (Samani et al. 2007), and ReSET (Elhaddad et al. 2011) to local 
conditions.  These models work on similar principles; a recent application of ReSET will be 
explored here as an example.  ReSET (Remote Sensing of ET) differs from the other models in 
its ability to use data from multiple weather stations.  It can be calibrated with local maximum 
reference ET from weather stations like METRIC or used uncalibrated with no imposed 
maximum like SEBAL (Bastiaanssen et al. 2005, for example). 
 
ReSET, like others, employs algorithms that use remotely sensed spectral data to calculate 
surface albedo, temperature and other components of the SEB (Elhaddad et al. 2011).  
Sensible heat flux for each pixel is modeled using the hottest and coldest pixels in the image 
as anchors.  The hottest pixel is assumed to be dry or fallow soil with no ET.  The coldest pixel 
is assumed to be a well-irrigated crop with maximum ET.  An iterative process is used to 
calculate the parameters needed to estimate sensible heat flux for the rest of the image.  After 
sensible heat flux is estimated for each pixel, latent heat and the evaporative fraction are 
calculated using the SEB equation.  This procedure provides the evaporative fraction for each 
pixel at the time the satellite image was taken.  ET is then calculated by multiplying evaporative 
fraction (EF) by the quotient of 24-hour net radiation minus 24-hour soil heat flux divided by 
latent heat of vaporization.  It is converted to a daily value by assuming ET is constant all day 
and multiplying by 86,400 (converting seconds to a day).53 
 
SEB methods have several advantages compared to other types of ET estimation.  First, rather 
than potential, actual ET is computed (Allen et al. 2007a).  In a 2011 comparison of water 
balance and remote sensing methods to estimate basin scale ET, Senay et al. state that SEB 
methods also do not require any assumptions about types of crops, or crop and soil conditions, 
and are better at handling stressed vegetation (e.g., diseased, water or nutrient stressed).  
Calibrated SEB methods like METRIC have an additional advantage in their ability to overcome 
possible accuracy and bias problems inherent when estimating net radiation and heat fluxes 
(Allen et al. 2007a). 
 
The primary disadvantage of SEB methods is probably the sophistication required to 

                                            
53 ET24 = 86,400 x EF x (Net radiation24 - soil heat flux24)/latent heat of vaporization (see Equation (9), Elhaddad et 
al. 2011) 
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successfully implement them.  Rafn et al. (2008) indicate that SEB methods are, “time 
consuming and require specialized software and knowledgeable personnel, making them 
potentially cost prohibitive for some applications.”  Factors like cloud cover, elevation, and 
latitude also affect SEB calculations and can produce spurious results (Senay et al. 2011).  
The necessity of picking wet and dry pixels can be a problem in some areas.  In 
heterogeneous landscapes, wet seasons on one hand or dry conditions on the other can make 
locating pixels with zero ET or maximum ET close to impossible (Bouwer et al. 2008).   
 
The future availability of thermal images could be a problem.  Landsat 5 Thematic Mapper 
(TM) imaging was taken offline in November 2011 due to a rapidly degrading component.  The 
USGS announced its intentions to suspend operations an additional 90 days on February 16, 
2012 while a team investigates (Campbell 2012).  On May 8, 2012, the USGS announced that 
Landsat 5 TM ceased regular acquisitions.54  Landsat 7 s Enhanced Thematic Mapper Plus is 
still operational although it experienced a Scan Line Corrector (SLC) failure in 2003.  The 
failure leads to gaps in the image and data loss particularly at the edges.55  The gaps can be 
filled using “nearest neighbor” techniques or information from other images close in time.  
NASA and USGS have partnered on the next Landsat spacecraft, the Landsat Data Continuity 
Mission (LDCM).  It has expanded visible and infrared imaging capabilities as well as a 100 m 
thermal sensor.  The LDCM is planned to launch in early 2013.56 

2. Vegetation Index 
 Another common method for estimating ET using remote sensing employs vegetation 
indexes.  Most vegetation index (VI) methods use a ratio of the values of red and near infrared 
light to estimate the transpiration part of ET.  This method is based on the relationship between 
leaf density and transpiration and the observation that leaves absorb red light and scatter near 
infrared light (Glenn et al. 2008).  The frequently used Normalized Difference Vegetation Index 
(NDVI) is calculated by subtracting red from near infrared values then dividing by red plus near 
infrared: NDVI = (NIR – Red)/(NIR + Red) (Glenn et al. 2010).  Values range from -1 to 1.  
NDVI for water is negative and for barren areas it is close to zero.  NDVI is moderate for shrub 
and grassland (0.2 to 0.3) and high for rainforests (0.6 to 0.8).57 
 
Vegetation indexes are used in conjunction with reference ET (ET0) to estimate ET, which 
leads to a refinement of the Penman-Monteith/crop coefficient (PM) method described earlier.   
However, the VI-based algorithms need to be regressed against ground ET measurements in 
the area where ET will be estimated.  Empirical relationships are established between the VI, 
ET, and weather data to find the local correlation between vegetation cover and ET (Senay et 
al. 2011). 
 
Nagler et al. (2009) indicate that while VI methods cannot estimate evaporation like SEB 
methods, plant transpiration is the larger part of ET and often the major unknown.  The basic 

                                            
54 “Landsat 5 Thematic Mapper Ceases Routine Acquisitions - Update,” USGS, May 8, 2012, 
http://landsat.usgs.gov/mission_headlines2012.php  
55 “SLC-off Products: Background,” modified December 30, 2010, 
http://landsat.usgs.gov/products_slcoffbackground.php 
56 “Landsat Data Continuity Mission,” last modified March 22, 2012, http://ldcm.nasa.gov/ 
57 J. Weier and D. Herring. “Measuring Vegetation (NDVI & EVI),” accessed February 20, 2012, 
http://earthobservatory.nasa.gov/Features/MeasuringVegetation/ 
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VI-ET estimation approach calculates transpiration as a product of reference ET, empirical 
crop coefficient (k), and VI.  In this equation, k is estimated by regressing transpiration and a VI 
over a crop cycle.  The evaporative fraction can also be found using this equation by setting 
transpiration over reference ET equal to k times VI.  The kVI term replaces the crop coefficient 
that would be used in the traditional PM method.  This term reflects actual information about 
the current state of the crop (Nagler et al. 2009). 
 
Once calibrated to local crops, a VI method can be used to predict actual ET.  Hunsaker et al. 
(2007) compared an NDVI-based estimation with traditional PM-based ET for wheat in central 
Arizona.  They tested the NDVI and PM methods and compared their estimates under normal, 
high and low planting densities; and high and low nitrogen treatments.  They found NDVI to be 
robust for both optimum and sub-optimum conditions (Hunsaker et al. 2007).  It performed 
particularly well compared to the PM in stands with low nitrogen. 
 
The main advantage of VI methods compared to SEB is ease of calculation.  Rafn et al. (2008) 
say their NDVI method, "is relatively fast, easy, and requires little knowledge of evaporation 
physics and aerodynamics.”  Additionally, the satellite imagery needed to calculate vegetation 
indexes are abundant compared to the thermal imagery needed for SEB methods.  There are 
multiple satellites with visible and near infrared bands across a range of temporal and spatial 
resolutions (Glenn et al. 2010).  MODIS, for example, has high temporal resolution (images 
taken every 1 to 2 days), and moderate spatial resolution (250 m).  Tang et al. (2009) 
compared the Landsat-based SEB algorithm, METRIC with a MODIS-based modified VI 
approach in the Upper Klamath River Basin in Oregon.  They noted the usual advantages of 
Landsat (high spatial resolution) and MODIS (high temporal resolution).  Their comparison 
showed a tendency for the MODIS approach to underestimate seasonal ET and for METRIC to 
overestimate it, compared to surface flux observations.   
 
The primary disadvantage of vegetation index ET estimation is the focus on transpiration only.  
In the desert southwest and similar areas, this may not be much of a drawback because soils 
are dry and soil evaporation is a small part of the water budget (Nagler et al. 2009).  
Vegetation indexes are also, “unable to detect early signs of water stress,” unlike SEB 
methods (Nagler et al. 2009).  The availability of images that are at sufficient spatial and 
temporal scale is also a consideration.   

C. Conclusion 
 For those interested in using remote sensing methods to compute ET, the choice 
between methods comes down to two main criteria: the temporal and spatial scale of ET 
estimation and available expertise.  SEB methods are more suited to well-defined basins than 
large areas (Senay et al. 2011).  The computational cost and availability of thermal images 
may make SEB methods less attractive in some situations.  Landsat thermal imagery is free, 
but until Landsat 5 is repaired or the next spacecraft (LDCM) is launched in 2013, there is only 
one operational thermal sensor, on Landsat 7.  Landsat 7 images require an extra step to fill 
gaps because of the SLC failure.  In locations with large fields (>25 hectare), the MODIS NDVI 
product may be the best bet to estimate ET.  It has high temporal resolution and is faster, 
easier, and less expensive to process than SEB methods (Rafn et al. 2008).  The Colorado 
River Basin districts have large fields, so MODIS-NDVI ET estimation is a possibility (Glenn et 
al. 2011).  For medium or small agricultural fields, MODIS NDVI would be insufficient to 
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estimate ET. 
 
Future models might employ a combination of SEB and VI techniques.  Glenn et al. (2008) 
recommend combining VI methods with land surface temperature (taken from thermal images) 
to provide enhanced estimates of ET and soil moisture.  Nalger et al. (2009) recommend 
complementing VI methods with SEB methods.  The VI would provide ET estimates but the 
SEB methods would be used as an auxiliary to detect plant stress. 
 
Remote sensing is providing data that can complement traditional ET estimation methods.  
These methods can improve ET estimates and are a viable option compared to developing 
new lysimeter-based crop coefficients.  ET estimates that are more timely and accurate can 
help irrigators track water use and align irrigation management with actual plant water needs.  
They may also help water managers develop a more complete picture of where water is going 
district or basin-wide. 
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VIII. Glossary 

acre-foot A unit of measure: approximately 325,850 gallons. 

applied water The amount of irrigation water applied to a field, typically over a season 
or year.  This is not the amount of water consumed by the crop.  Its 
main components include transpiration, evaporation, runoff, and 
recharge.  It is typically greater than consumptive use in semi-arid 
zones. 

baseline ET Estimated historic evapotranspiration (ET) based on crop records and 
established crop ET rates.  This can be used as the benchmark for 
computing water savings in fallowing or crop shifting programs when 
compared to estimated ET under conservation conditions. 

benefit-cost analysis A tool used in decision making that compares all the costs and benefits 
of a given action in present value monetary terms.  Financial, 
environmental, social and other relevant costs and benefits may be 
included. 

central pivot 
irrigation 

A form of irrigation, where sprinkler heads are placed at intervals along 
pipes suspended above a field on wheeled supports.  The pipe pivots 
from the center of the field, where the water source is, and traces a 
circle as it rotates.  

crop coefficient (Kc) The term that adjusts reference evapotranspiration when using the 
Penman-Monteith method.  It is crop and growth stage specific.  For 
example, to estimate the weekly evapotranspiration of a wheat field, the 
weekly reference evapotranspiration for the field would be multiplied by 
the crop coefficient for the variety and growth stage of the wheat. 

crop consumptive 
use 

The water expended in producing a crop, including transpiration and 
evaporation.  Runoff and recharge are not a part of crop consumptive 
use.  The term is used interchangeably with evapotranspiration (ET).  It 
is equal to or less than applied water (in areas dependent on irrigation). 

cropland idling See fallowing. 

cropping pattern A field s crop rotation history.  

crop shifting A change in cropping pattern, generally to crops with lower 
consumptive water use.  The difference between historic and current 
consumptive water use may then be transferred to another use. 

discount rate The interest rate used to adjust future costs and benefits to make them 
comparable to current costs and benefits.  Used when computing 
present value in a benefit-cost analysis. 

electromagnetic A length measurement used to describe electromagnetic radiation.  The 
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wavelength electromagnetic spectrum can be grouped by wavelength.  For 
example, the visible spectrum ranges in wavelength from about 400 to 
700 nanometers.  Satellite sensors are designed to detect radiation in 
narrow wavelength ranges depending on the purpose of the sensor. 

evaporation The process by which water is vaporized to the atmosphere off a 
surface (e.g., water body or field). 

evapotranspiration 
(ET)  

The combined processes of evaporation and transpiration.  In 
agriculture, the amount of water that is consumed in the process of 
growing crops.  Also referred to as consumptive use. 

fallowing Forgoing crop production on a historically cropped field.  In the context 
of this report, farmers are paid to fallow fields outside of their normal 
crop rotations in order to temporarily transfer water.  Also called crop 
idling or forbearance. 

forbearance See fallowing. 

headgate The movable barrier between a canal and field that controls the flow of 
water. 

infrared image An image showing a band of electromagnetic information from the 
infrared range of the spectrum, between roughly 1 and 100 microns.  
Landsat 7 s three infrared bands span less than 2 microns each.  
Infrared is split into groups: near, short, mid, long, and far.  Long-wave 
infrared radiation is also called thermal radiation. 

irrigation district A body that has the legal authority to obtain and distribute irrigation 
water to a geographically defined group of irrigators.  A district may 
collect fees and handle the governance, delivery, and legal rights of 
water.  

junior water right A water right with a relatively low priority compared to other water rights 
in the same system.  If water supplies are limited, junior rights are more 
likely to have their supply reduced. 

lateral move 
irrigation 

A form of irrigation, where sprinkler heads are placed at intervals along 
pipes suspended above a field on wheeled supports.  The pipe is rolled 
from one end of a field to the other and is supplied with water from one 
side. 

lysimeter A device for measuring actual evapotranspiration from crops.  It is 
installed in an established field to resemble the surrounding conditions 
as closely as possible.  The soil removed for its installation is replaced 
within the device and crops are planted.  Its pan isolates the crops in 
the lysimeter from the surrounding field so that the water going in and 
out can be measured precisely. 
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moral hazard When entering into an agreement, the potential for either party to 
behave contrary to the spirit of the agreement.  For example, the seller 
in a water conservation agreement may consume water they agreed to 
conserve. 

paper water A documented water right that has not been recently or regularly used. 

Penman-Monteith The equation for estimating evapotranspiration (ET) based on a 
standardized grass crop under current meteorological conditions, i.e., 
reference ET.  It is multiplied by a variety and growth stage specific 
crop coefficient to estimate actual ET. 

permanent water 
transfer 

The sale or transfer of a water right.  Compare to a temporary sale or 
lease, where a specific volume of water is transferred but the seller 
retains the water right.  Water leases greater than 50 or 100 years are 
considered permanent in some programs. 

potential 
evapotranspiration 

It is evapotranspiration (ET) of a short, uniform green crop that shades 
the ground completely and has plenty of water.  It is a broad term.  
Penman-Monteith reference ET is a narrowly defined case of potential 
ET. 

present value The combined value of all current and future costs and benefits of a 
given outcome expressed in current monetary terms (by using a 
discount rate).  It is used in benefit-cost analysis to compare outcomes 
with different timings of costs and benefits. 

radiometric 
resolution 

The ability of a sensor to differentiate intensity values within its 
spectrum range.  It is measured in bits.  The number of values a sensor 
can detect is found by raising two to its number of bits.  For example, 
an 8-bit sensor can detect 28 or 256 values. 

recharge Water that percolates through the soil and reaches the groundwater 
table.  This water might be extractable for future use. 

reference 
evapotranspiration 
(ET0) 

The evapotranspiration of a freely transpiring standardized grass crop 
that has no weeds, disease, or lack of water. 

remote sensing Gathering information from a distance about energy reflected or emitted 
by the Earth.  

seepage Water that percolates through the soil.  It may also be recharge. 

senior water right A water right with high priority compared to other water rights in the 
same system.  If water supplies are limited, senior rights are least likely 
to have their supply reduced. 

spatial resolution In remote sensing, the ground area represented by one image pixel.  
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For example, in an image with 60-meter resolution, each pixel would 
correspond to a 60 by 60 m area of ground.  

spectral resolution The range of electromagnetic wavelengths, or type of information, a 
sensor will detect.  For example, band 6 on the Landsat 5 Thematic 
Mapper detects thermal radiation, with wavelengths from 10.4 to 12.5 
microns. 

surface energy 
balance (SEB) 

A method for estimating evapotranspiration (ET) that uses thermal 
satellite images combined with ground weather station data. 

temporal resolution The length of time between subsequent satellite imaging of the same 
location.  For example, Landsat 7 has a 16-day temporal resolution.  
The same location is imaged every 16 days. 

temporary water 
transfer 

The renting of a volume of water for a restricted period of time.  The 
seller retains the permanent water right and sells only the use of the 
water under specified circumstances.  Also called a water lease.  
Compare to permanent water transfer. 

thermal image An image showing electromagnetic information from the long-wave 
infrared range of the spectrum.  Landsat 7 s thermal band sensor has a 
range of 10.4 to 12.5 microns. 

transpiration The process where water taken up by the roots of plants is vaporized to 
the atmosphere from plant surfaces. 

variable rate 
irrigation 

A type of irrigation used with central-pivot or lateral-move sprinkler 
systems.  The water application rate can vary at each sprinkler head.  
Rates are based on readings from soil moisture sensors in the field.  
The entire system can be automated and remotely accessed using 
specialized software and wireless networking.  Also called precision 
irrigation. 

visible spectrum The portion of the electromagnetic spectrum that is visible to the naked 
eye.  Wavelengths in the visible spectrum range from about 400 
nanometers at the violet end of the spectrum to 700 nanometers at the 
red end of the spectrum.   

water bank A water storage and/or transfer entity.  A storage bank allows members 
to store water in reservoirs or underground aquifers for future use or to 
benefit the water supply.  A transfer bank buys and leases water or acts 
as an intermediary between water buyers and sellers.  

water right The legal right to use a quantity of water.  It may be subject to limits 
including beneficial use, timing, total volume, and extraction rate.  
Rights generally have seniority based on the origination date.  See 
paper water, junior water right, and senior water right. 
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W m-2 Watts per meters squared; an alternate measure of evapotranspiration.  
To convert to mm per day (mm day-1), multiply by 0.0353.   

IX. Acronyms 
ACT   Australian Capital Territory 
ASCE   American Society of Civil Engineers 
ASTER  Advanced Spaceborne Thermal Emission and Reflection Radiometer 
ATTRA  National Sustainable Agriculture Information Service 
AZMET Arizona Meteorological Network 
BOR   U.S. Bureau of Reclamation 
CDWR  California Department of Water Resources 
CIMIS  California Irrigation Management Information System 
EAA   Edwards Aquifer Authority 
ERS   Economic Research Service 
ET(AW)  evapotranspiration (of applied water) 
EWRI  Environmental and Water Resources Institute 
FAO  Food and Agriculture Organization of the United Nations 
GAO  U.S. Government Accountability Office 
GIS  geographic information system 
GPS  global positioning system 
IAG   Independent Audit Group 
IDWR   Idaho Department of Water Resources 
IID  Imperial Irrigation District 
KWAPA Klamath Water and Power Authority 
LCRAS  Lower Colorado River Accounting System 
LDCM  Landsat Data Continuity Mission 
METRIC Mapping Evapotranspiration at high Resolution with Internalized Calibration 
MDBA  Murray-Darling Basin Authority 
MME  measuring, monitoring, and enforcing 
MODIS Moderate Resolution Imaging Spectroradiometer 
NASS  National Agricultural Statistics Service 
NCAT  National Center for Appropriate Technology  
NDVI  Normalized Difference Vegetation Index 
PM  Penman-Monteith evapotranspiration equation 
QSA   Quantification Settlement Agreement 
ReSET Remote Sensing of ET 
SEB  surface energy balance 
SEBAL Surface Energy Balance Algorithm for Land 
SLC  Scan Line Corrector 
TM  Thematic Mapper 
UDWR Utah Division of Water Rights 
USGS  U.S. Geological Survey 
USDA  U.S. Department of Agriculture 
VI  vegetation index 
VRI  variable rate irrigation 
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WRP   Wetlands Reserve Program 
WTP   Water Transaction Program 
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