Upper Lake Mary: Lake Level Response to Climate Variability

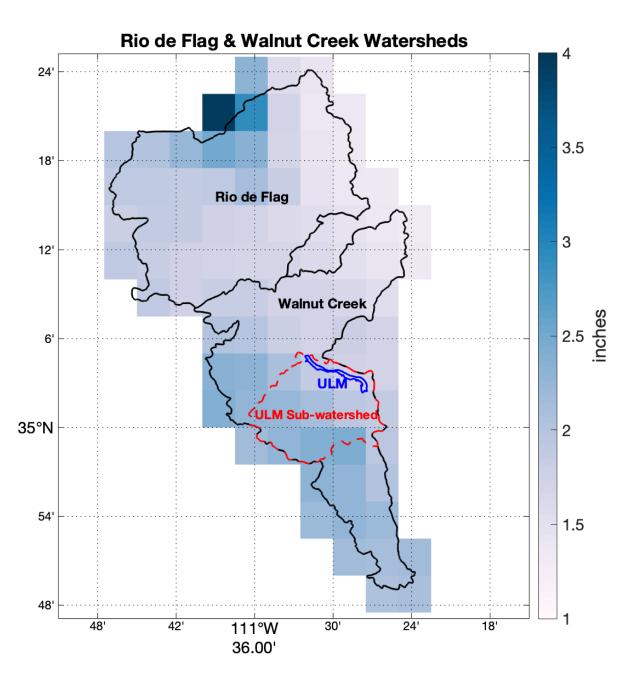
Talia Anderson, Connie Woodhouse, Dan Ferguson

March 31, 2020

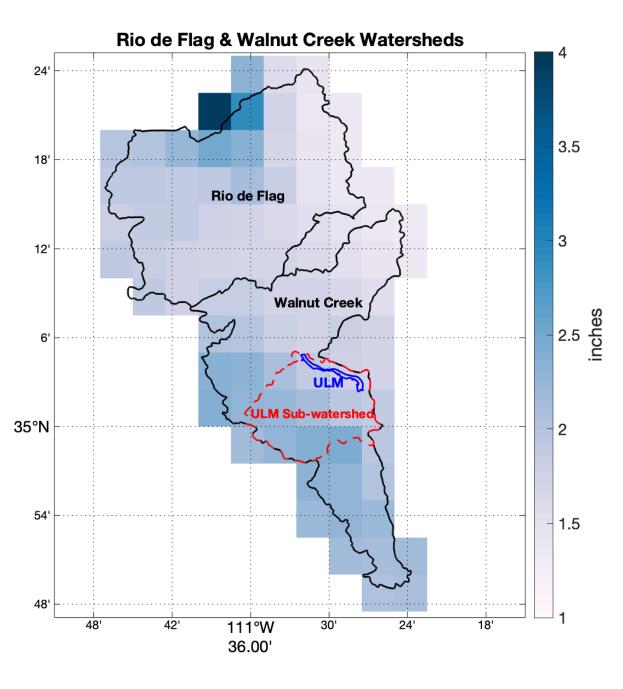
1. What are the main climatic controls on ULM lake levels?

- 1. What are the main climatic controls on ULM lake levels?
- 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?

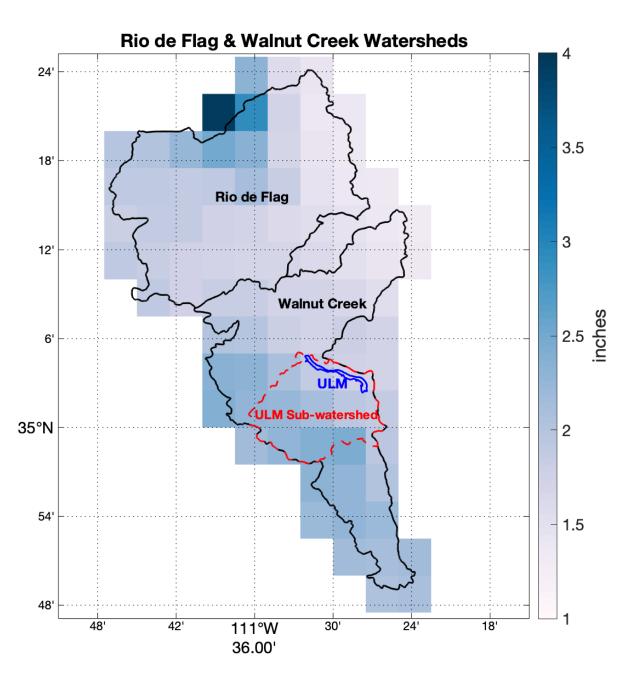
- 1. What are the main climatic controls on ULM lake levels?
- 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?
- 3. What climate factors may have additional importance in years that are somewhat "unusual"?


- 1. What are the main climatic controls on ULM lake levels?
- 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?
- 3. What climate factors may have additional importance in years that are somewhat "unusual"?
- 4. Is temperature playing an increasingly important role in driving lake level variability?

- 1. What are the main climatic controls on ULM lake levels?
- 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?
- 3. What climate factors may have additional importance in years that are somewhat "unusual"?
- 4. Is temperature playing an increasingly important role in driving lake level variability?
- 5. What are the characteristics of ULM droughts?

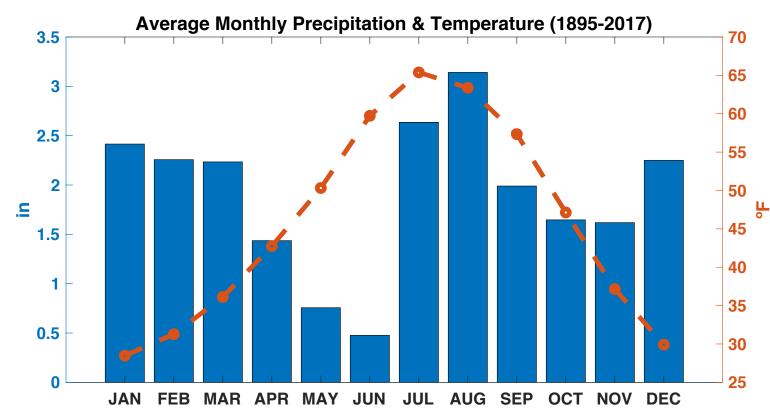

Data used in analyses

Upper Lake Mary Lake Levels	Years	Units
ULM Inflow Report	1960 – 2018	Lake level maximums, minimums, and no production minimums
Precipitation		
PRISM gridded data for Rio de Flag and Walnut Creek Watersheds	1895 – 2017	Monthly sums
Temperature		
PRISM gridded data for Rio de Flag and Walnut Creek Watersheds	1895 – 2017	Monthly means
Snow Water		
Equivalent		
Fort Valley Snow Course (ID 11P02; HUC 150200150102)	1947 – 2018	March 1 SWE


Upper Lake Mary (ULM) Stats – 1960 to 2018	
Maximum Possible Volume	16,300 acre feet (100% full)
Maximum Lake Level Mean	10,459 acre feet (64% full)
Minimum Lake Level Mean (no production)	7,489 acre feet (46% full)
Absolute Minimum Lake Level (production included)	374 acre feet (2.3% full in 1978)
Absolute Minimum Lake Level (no production)	71,614 acre feet (9.9% full in 2003)
Years ULM has reached Max Possible Volume	15 years (100% full at highest spring levels)

Upper Lake Mary (ULM) Stats – 1960 to 2018	
Maximum Possible Volume	16,300 acre feet (100% full)
Maximum Lake Level Mean	10,459 acre feet (64% full)
Minimum Lake Level Mean (no production)	7,489 acre feet (46% full)
Absolute Minimum Lake Level (production included)	374 acre feet (2.3% full in 1978)
Absolute Minimum Lake Level (no production)	71,614 acre feet (9.9% full in 2003)
Years ULM has reached Max Possible Volume	15 years (100% full at highest spring levels)

Upper Lake Mary (ULM) Stats – 1960 to 2018	
Maximum Possible Volume	16,300 acre feet (100% full)
Maximum Lake Level Mean	10,459 acre feet (64% full)
Minimum Lake Level Mean (no production)	7,489 acre feet (46% full)
Absolute Minimum Lake Level (production included)	374 acre feet (2.3% full in 1978)
Absolute Minimum Lake Level (no production)	71,614 acre feet (9.9% full in 2003)
Years ULM has reached Max Possible Volume	15 years (100% full at highest spring levels)

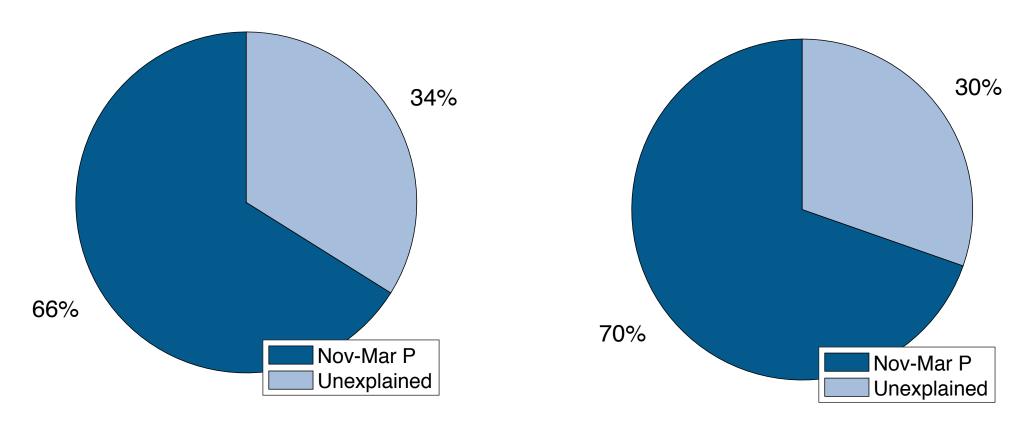


Two peaks in precipitation:

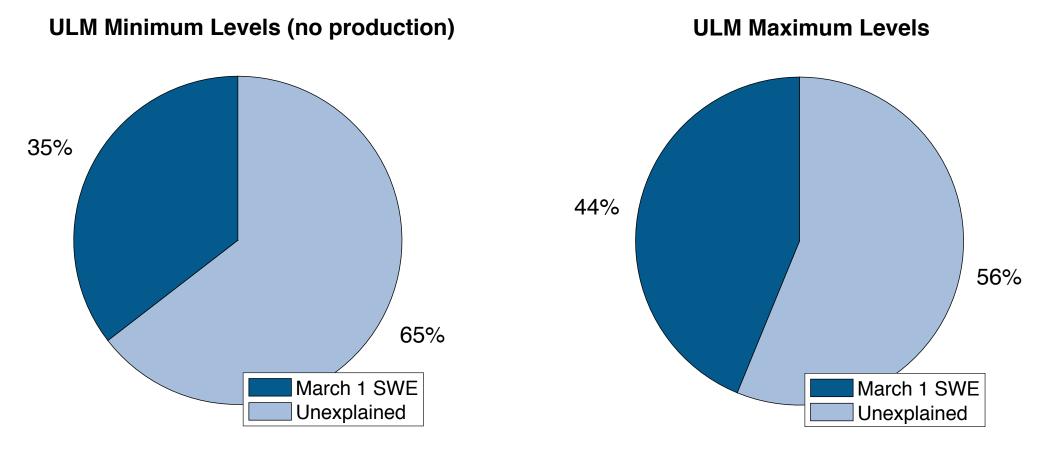
- January
- August

Average monthly temperature range:

- 28.5°F in January
- 65.4°F in July



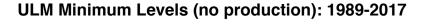
ULM Minimum Levels (no production)

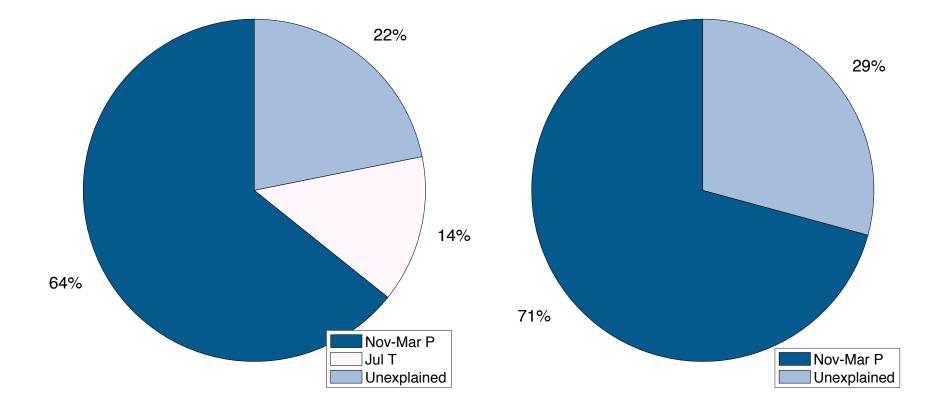

ULM Maximum Levels

ULM Maximum Levels

ULM Minimum Levels (no production)

Nov-Mar precipitation most important for ULM lake levels.

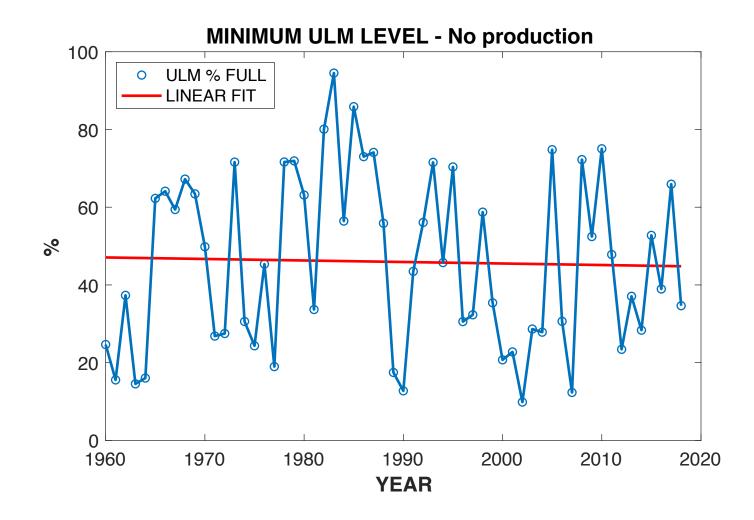



Snow is also an important predictor!

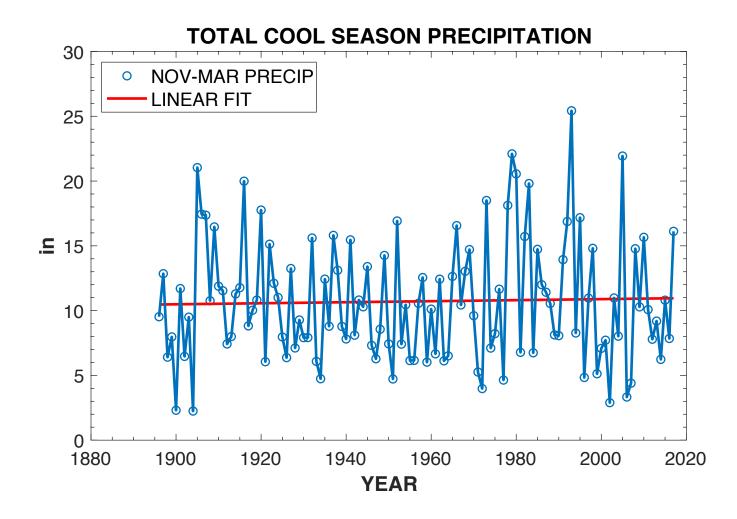
ULM Minimum Levels (no production): 1960-1988

ULM Minimum Levels (no production): 1989-2017

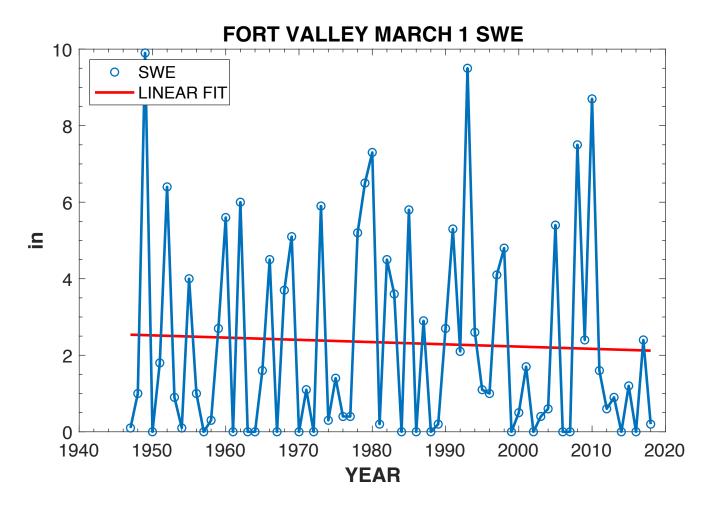
ULM Minimum Levels (no production): 1960-1988

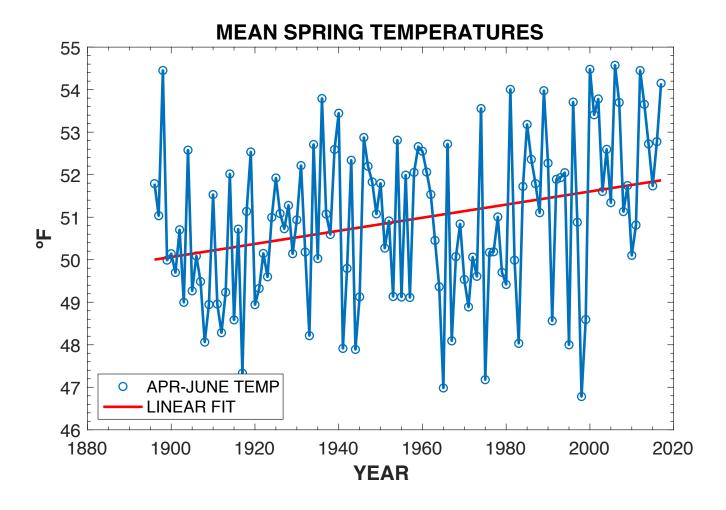

July temperatures are also a significant predictor of lake levels over the first time period (1960-1988).

- Primary control: Nov-Mar precipitation
- First time period (1960-1988): July temps are a significant predictor
- Second time period (1989-2017): May-Jun temperatures appear to have a more important influence, but are not significant enough to make the model


- Primary control: Nov-Mar precipitation
- First time period (1960-1988): July temps are a significant predictor
- Second time period (1989-2017): May-Jun temperatures appear to have a more important influence, but are not significant enough to make the model

Questions?


2. Have there been trends in lake levels and/or in the climate variables that influence ULM?


No production ULM lake level minimums: No significant trend

Nov-Mar precipitation: No significant trend

March 1 SWE: No significant trend

Apr-Jun Temps: Significant trend for 0.02°F/year beginning in 1896 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?

Yes:

Apr-June temperatures, WY annual temperatures (increasing)

No:

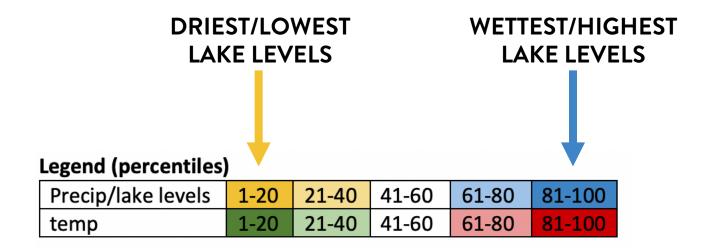
Nov-Mar precipitation, WY annual precipitation March 1 SWE Minimum (no production) lake levels, maximum lake levels 2. Have there been trends in lake levels and/or in the climate variables that influence ULM?

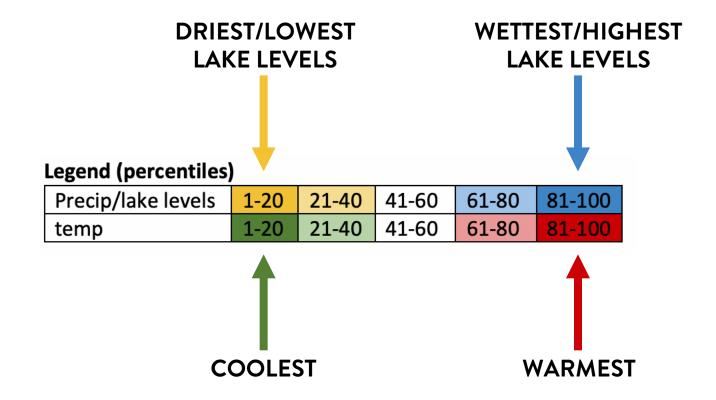
Yes:

Apr-June temperatures, WY annual temperatures (increasing)

No:

Nov-Mar precipitation, WY annual precipitation March 1 SWE


Minimum (no production) lake levels, maximum lake levels


Questions?

3. What climate factors may have additional importance in years that are somewhat "unusual"?

Legend (percentiles)

Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

Legend (percentiles)

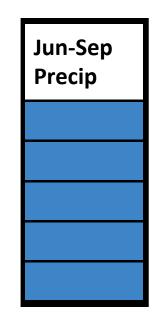
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

5 driest years:

WY	Minimum lake level
2002	
2007	
1990	
1963	
1961	

Legend (percentiles)

Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100


5 driest years:

WY	Minimum lake level	Oct Precip	Nov-Mar Precip	Apr-May Precip	Jun-Sep Precip	Nov-Mar Temp	Jun-Sep Temp
2002							
2007							
1990							
1963							
1961							

Legend (percentiles)					
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

5 of the wettest monsoons with min lake levels > 60th percentile (and 1999):

WY	Minimum lake level
1967	
1983	
1984	
1986	
1999	

Legend (percentiles)					
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100


5 of the wettest monsoons with min lake levels > 60th percentile (and 1999):

WY	Minimum lake level	Oct Precip	Nov-Mar Precip	Apr-May Precip	Jun-Sep Precip	Nov-Mar Temp	Jun-Sep Temp
1967							
1983							
1984							
1986							
1999							

Legend (percentiles)							
Precip/lake levels	1-20	21-40	41-60	61-80	81-100		
temp	1-20	21-40	41-60	61-80	81-100		

5 of the driest monsoons with min lake levels > 60th percentile:

WY	Minimum lake level
1973	
1978	
1979	
1980	
1993	

Legend (percentiles)							
Precip/lake levels	1-20	21-40	41-60	61-80	81-100		
temp	1-20	21-40	41-60	61-80	81-100		

5 of the driest monsoons with min lake levels > 60th percentile:

WY	Minimum lake level	Oct Precip	Nov-Mar Precip	Apr-May Precip	Jun-Sep Precip	Nov-Mar Temp	Jun-Sep Temp
1973							
1978							
1979							
1980							
1993							

3. Unusual Years

Legend (percentiles)								
Precip/lake levels	1-20	21-40	41-60	61-80	81-100			
temp	1-20	21-40	41-60	61-80	81-100			

Highest lake levels (Max=100% full)

Max Lake
Level

3. Unusual Years

Legend (percentiles)					
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

Highest lake levels (Max=100% full)

	Max Lake		Nov-Mar	
WY	Level	Oct P	Р	Apr-May P
1966				
1969				
1973				
1978				
1979				
1980				
1982				
1983				
1985				
1993				
1995				
2005				
2008				
2010				
2017				

3. What climate factors may have additional importance in years that are somewhat "unusual"?

- Cool season precipitation (Nov-Mar) has the largest influence on ULM lake level variability
- That said...**temperatures** in different seasons do appear to **play a secondary role** in enhancing or counteracting the effects of cool season precipitation

3. What climate factors may have additional importance in years that are somewhat "unusual"?

- Cool season precipitation (Nov-Mar) has the largest influence on ULM lake level variability
- That said...**temperatures** in different seasons do appear to **play a secondary role** in enhancing or counteracting the effects of cool season precipitation

3. What about 1990?

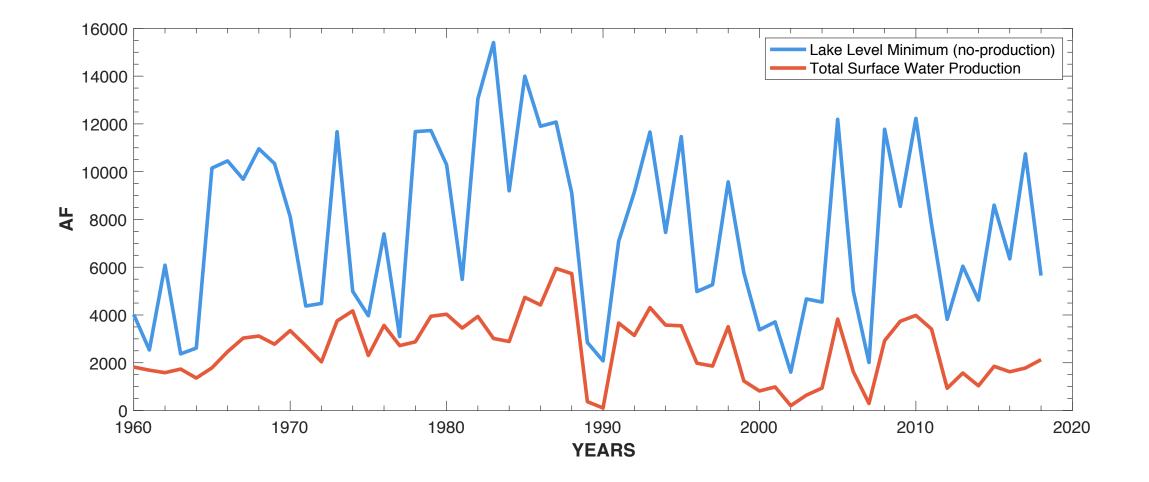
3. What about 1990?

Legend (percentiles)

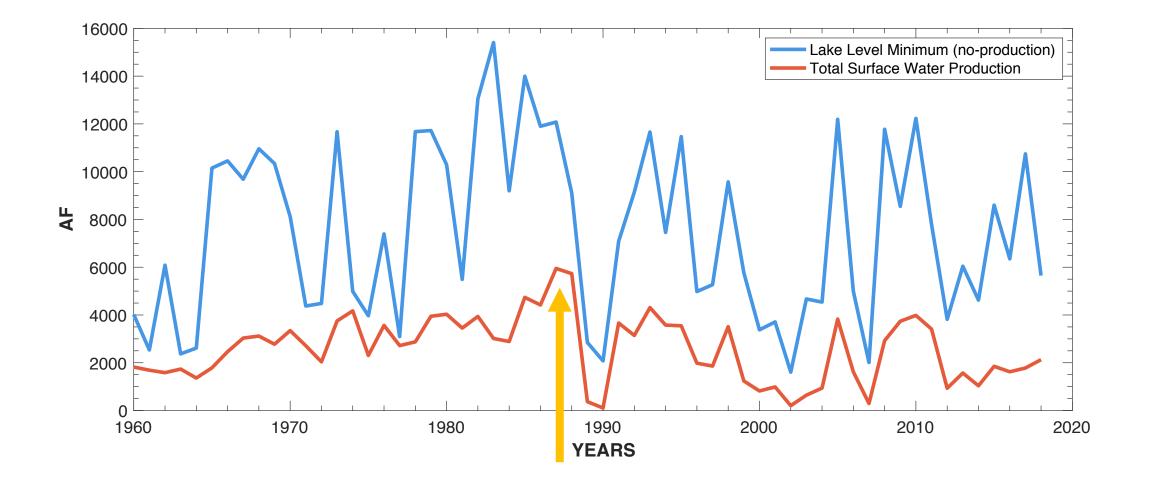
0 11					
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

	Minimum	Oct Precip	Nov-Mar	Apr-May	Jun-Sep	Nov-Mar	Jun-Sep	SW Prod
WY	lake level	Oct Freelb	Precip	Precip	Precip	Temp	Temp	

1990				
------	--	--	--	--


3. What about 1990?

Legend (percentiles)


0 11					
Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

WY	Minimum lake level	Oct Precip	Nov-Mar Precip	Apr-May Precip	Jun-Sep Precip	Nov-Mar Temp	Jun-Sep Temp	SW Prod
1989								
1990								
1991								

```
3. What about 1990?
```



```
3. What about 1990?
```


Questions?

4. Is temperature playing an increasingly important role in driving lake level variability?

4. Changing (?) role of temperature

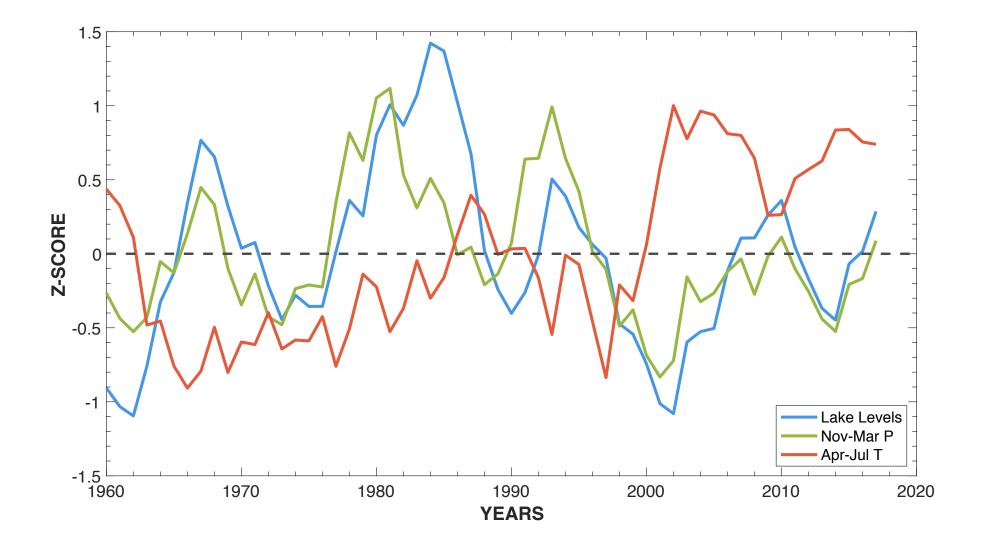
All lowest lake level years:

WY	Min lake level
1961	
1963	
1964	
1975	
1977	
1989	
1990	
2000	
2001	
2002	
2007	
2012	

Legend (percentiles)

Precip/lake levels	1-20	21-40	41-60	61-80	81-100
temp	1-20	21-40	41-60	61-80	81-100

4. Changing (?) role of temperature


All lowest lake level years:

WY	Min lake level	Oct Temp	Nov-Mar Temp	Apr-May Temp	Jun-Sep Temp
1961					
1963					
1964					
1975					
1977					
1989					
1990					
2000					
2001					
2002					
2007					
2012					

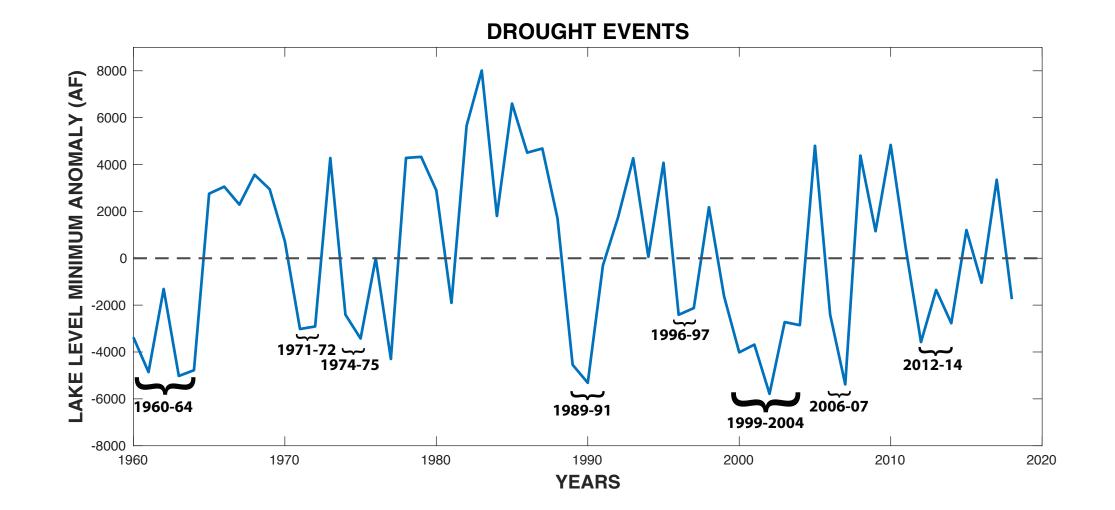
Legend (percentiles)

[Precip/lake levels	1-20	21-40	41-60	61-80	81-100
	temp	1-20	21-40	41-60	61-80	81-100

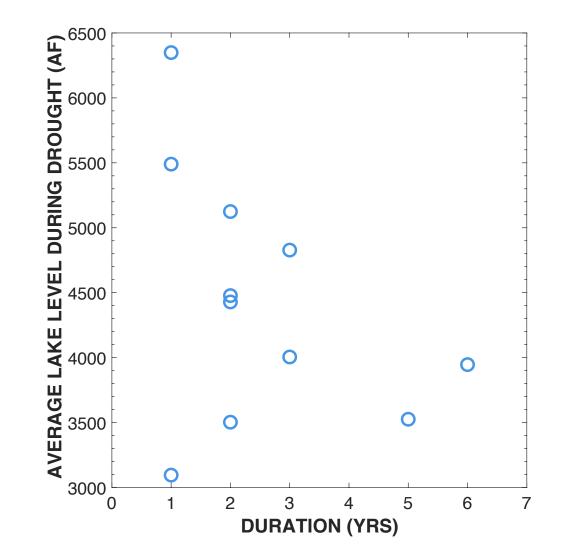
4. Changing (?) role of temperature

4. Is temperature is playing an increasingly important role in driving lake level variability?

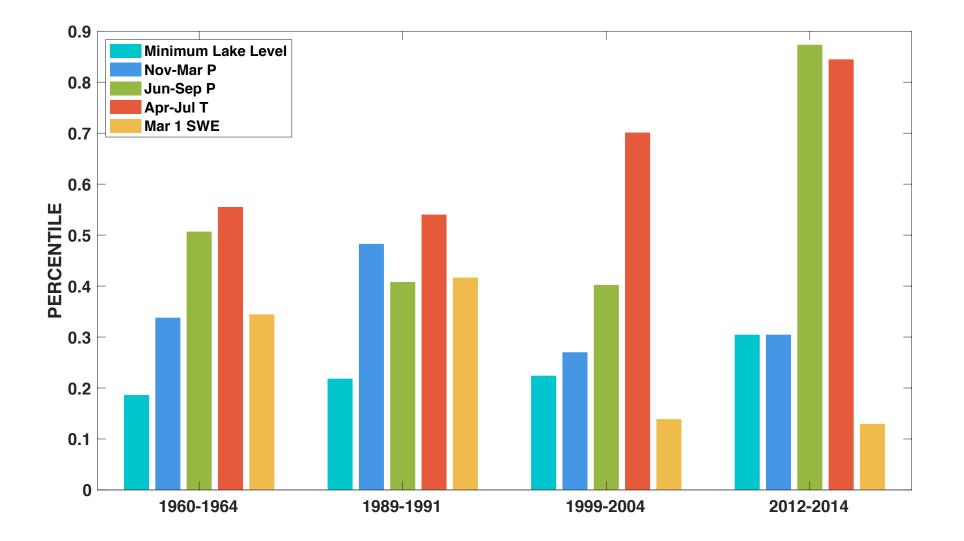
 Warmer temperatures may be becoming more of an important factor in driving the low lake level years in the 2nd half of the ULM record


4. Is temperature is playing an increasingly important role in driving lake level variability?

 Warmer temperatures may be becoming more of an important factor in driving the low lake level years in the 2nd half of the ULM record



5. What are the characteristics of ULM droughts?


5. Characteristics of ULM droughts?

5. Characteristics of ULM droughts?

5. Characteristics of ULM droughts?

5. What are the characteristics of ULM droughts?

- Longest drought: 6 years (1999-2004)
- Most intense single year drought: 2002
- Extended drought events have below median Nov-Mar precip and March 1 SWE
- The two most recent extended droughts have temperatures above the 70th percentile

5. What are the characteristics of ULM droughts?

- Longest drought: 6 years (1999-2004)
- Most intense single year drought: 2002
- Extended drought events have below median Nov-Mar precip and March 1 SWE
- The two most recent extended droughts have temperatures above the 70th percentile

Questions?

• Primary control on ULM lake levels: cool season precipitation

- Primary control on ULM lake levels: cool season precipitation
- Trends: Only significant trends identified in temperature record (increasing)

- Primary control on ULM lake levels: cool season precipitation
- Trends: Only significant trends identified in temperature record (increasing)
- Unusual years: temperatures in different seasons do appear to play a secondary role in enhancing or counteracting the effects of cool season precipitation

- Primary control on ULM lake levels: cool season precipitation
- Trends: Only significant trends identified in temperature record (increasing)
- Unusual years: temperatures in different seasons do appear to play a secondary role in enhancing or counteracting the effects of cool season precipitation
- Droughts: 1-6 years, recent extended droughts have extremely warm spring/summer temps

Implications:

 Increasing role of temperature has been seen in recent droughts in California and in streamflow records from the upper Colorado River basin

Implications:

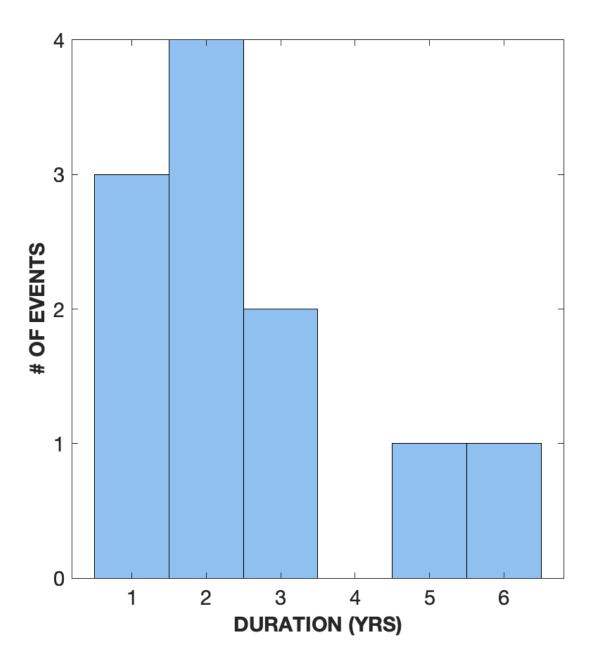
- Increasing role of temperature has been seen in recent droughts in California and in streamflow records from the upper Colorado River basin
- While surface water production is relatively highly correlated with lake level minimums, understanding the characteristics of drought events could provide additional information for supply planning

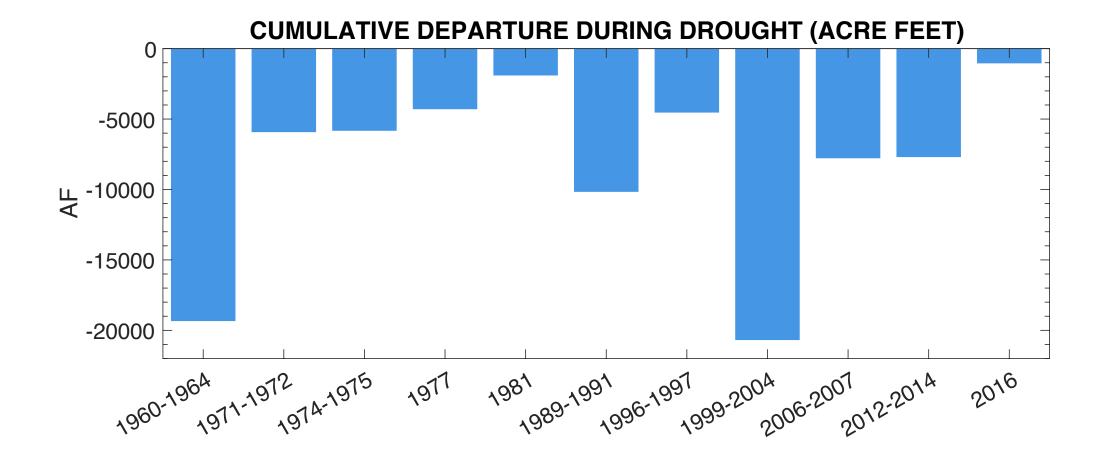
Questions, comments, suggestions?

This project was funded by the NOAA RISA program, Climate Assessment for the Southwest (CLIMAS).

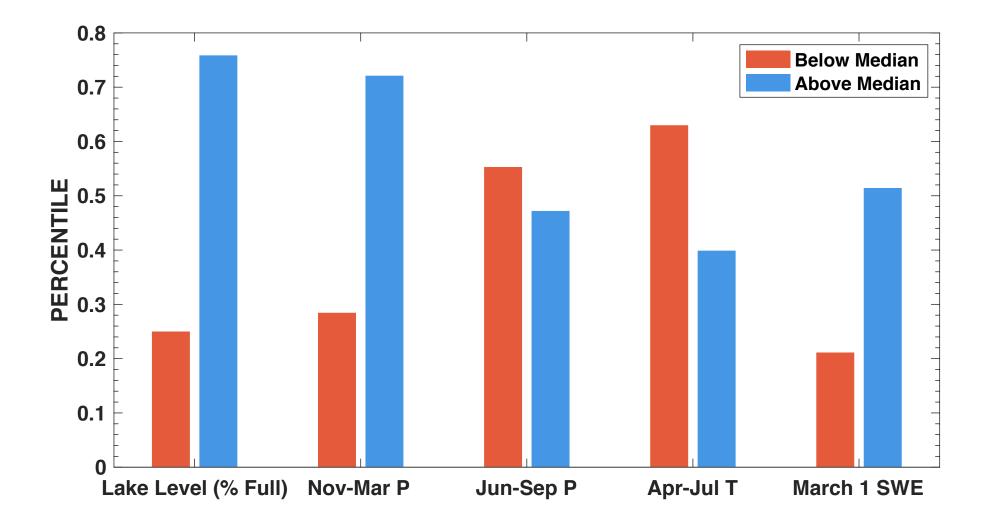
For more information, contact:

Talia Anderson


taliaanderson@email.arizona.edu


Connie Woodhouse

<u>conniew1@email.arizona.edu</u>


Dan Ferguson <u>dferg@email.arizona.edu</u>

Drought Duration

Percentiles for Above & Below Median Years

